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Abstract: 

The predominantly urban roads of the ACT create a complex environment in which drivers must quickly 
detect and respond to changing hazards. This project comprised three experiments designed to assess 
ŦŀŎǘƻǊǎ ǘƘŀǘ ŀŦŦŜŎǘ ŘǊƛǾŜǊǎΩ ŀōƛƭƛǘȅ ǘƻ ŘŜǘŜŎǘ ŎƘŀƴƎŜs in visual information and specifically exploring 
whether sleepiness impairs change detection, as no previous published research had examined this. 

Experiment 1 assessed ŦŀŎǘƻǊǎ ǘƘŀǘ ŀŦŦŜŎǘ ŘǊƛǾŜǊǎΩ change detection using photographic stimuli 
representing urban and rural driving scenes. Accuracy, response time (RT) and eye movements were 
measured. Participants showed superior change detection in rural compared with urban scenes, and for 
changes involving road users, animals and traffic lights, compared to inanimate objects (signs and trees).  

Experiment 2 used a modified version of the Experiment 1 task to explore the effect of sleep loss on 
ŎƘŀƴƎŜ ŘŜǘŜŎǘƛƻƴΦ tŀǊǘƛŎƛǇŀƴǘǎ ŎƻƳǇƭŜǘŜŘ ǘƘŜ ŎƘŀƴƎŜ ŘŜǘŜŎǘƛƻƴ ǘŀǎƪ ǘǿƛŎŜΣ ƻƴŎŜ ŀŦǘŜǊ ŀ ƴƻǊƳŀƭ ƴƛƎƘǘΩǎ 
sleep (8 hours) and once following a night of sleep restriction (5 hours). Sleepiness did not impair 
accuracy, but was associated with increased RT to detect changes in urban scenes. As in Experiment 1, 
participants were more efficient at detecting changes to other road users than static objects (trees and 
signs) and were better at detecting changes in rural scenes compared to urban scenes. 

Experiment 3 was conducted in the CARRS-Q advanced driving simulator. ParticipantsΩ ŀōƛƭƛǘȅ ǘƻ ŘŜǘŜŎǘ 
expected and unexpected changes while driving in simulated urban and rural areas was compared when 
alert (8 hours sleep) and sleepy (5 hours sleep). Sleep loss did not significantly impair detection of 
expected changes; however, there was a non-significant reduction in detection of unexpected changes. 
Participants were better at detecting changes with high safety relevance and in urban areas (where 
travel speed was low), compared to rural areas (where travel speeds were high).  

Overall, this research suggests that drivers are better at detecting changes that involve other road users 
and targets with high safety relevance. The impact of safety relevance is greatest in demanding 
situations, e.g. when the visual environment is cluttered or at high travel speeds. There is limited 
evidence that sleep loss impairs efficiency of change detection in visually cluttered urban scenes. Future 
research is necessary to understand the vulnerability of visual attention to sleep loss.  

Key words: 
change detection; change blindness; sleep 
restriction; fatigue; driving; hazard perception 

Disclaimer: 
This report is disseminated in the interest of information 
exchange. The views expressed here are those of the authors, and 
not necessarily those of the Australian National University or the 
Queensland University of Technology. 

  



 

Final Report: Effects of sleep loss on change detection while driving (July 2016) 3 

Contents 

1. Background .................................................................................................................................................... 6 

1.1. Project Objectives .................................................................................................................................. 6 

1.2. Overview of Experimental Series .......................................................................................................... 7 

1.3. Project Team and Statement of Contributions .................................................................................... 8 

2. Literature Review ........................................................................................................................................ 10 

2.1. Driver Sleepiness .................................................................................................................................. 10 

2.2. Change Blindness ................................................................................................................................. 11 

2.2.1. Target Relevance .......................................................................................................................... 12 

2.2.2. Driving Experience ........................................................................................................................ 13 

2.2.3. Familiarity ...................................................................................................................................... 14 

2.2.4. Secondary Task Engagement ....................................................................................................... 15 

2.3. Sleep and Change Blindness ................................................................................................................ 15 

2.4. Summary and Conclusions .................................................................................................................. 16 

3. Experiment 1 ............................................................................................................................................... 17 

3.1. Background and Rationale ................................................................................................................... 17 

3.1.1. The Current Study ......................................................................................................................... 18 

3.2. Method ................................................................................................................................................. 19 

3.2.1. Participants ................................................................................................................................... 19 

3.2.2. Apparatus ...................................................................................................................................... 19 

3.2.3. Stimuli ............................................................................................................................................ 19 

3.2.4. Self-Report Measures ................................................................................................................... 21 

3.2.5. Procedure ...................................................................................................................................... 21 

3.2.6. Data Analysis ................................................................................................................................. 22 

3.3. Results .................................................................................................................................................. 22 

оΦоΦмΦ tŀǊǘƛŎƛǇŀƴǘǎΩ 5ǊƛǾƛƴƎ tŀǘǘŜǊƴǎ ....................................................................................................... 22 

3.3.2. Effects of Image Repetition .......................................................................................................... 23 

3.3.3. Change Detection Accuracy ......................................................................................................... 24 

3.3.4. Change Detection Response Time (RT) ....................................................................................... 27 

3.3.5. Self-Report Measures ................................................................................................................... 29 



 

Final Report: Effects of sleep loss on change detection while driving (July 2016) 4 

3.3.6. Eye Movements: Fixations on Change Targets ........................................................................... 29 

3.3.7. Eye Movements: Non-Target Fixation Patterns .......................................................................... 32 

3.4. Discussion ............................................................................................................................................. 34 

3.4.1. Effects of Driving Environment: Urban vs. Rural ......................................................................... 34 

3.4.2. Effects of Change Safety Relevance ............................................................................................. 34 

3.4.3. Effects of Target Type ................................................................................................................... 35 

3.4.4. Summary ....................................................................................................................................... 36 

4. Experiment 2 ............................................................................................................................................... 37 

4.1. Background and Rationale ................................................................................................................... 37 

4.2. Method ................................................................................................................................................. 38 

4.2.1. Participants ................................................................................................................................... 38 

4.2.2. Apparatus ...................................................................................................................................... 38 

4.2.3. Stimuli ............................................................................................................................................ 38 

4.2.4. Self-Report Measures ................................................................................................................... 39 

4.2.5. Procedure ...................................................................................................................................... 40 

4.2.6. Data Analysis ................................................................................................................................. 40 

4.3. Results .................................................................................................................................................. 41 

4.3.1. Participants ................................................................................................................................... 41 

4.3.2. Sleep Duration .............................................................................................................................. 42 

4.3.3. Subjective Sleepiness.................................................................................................................... 42 

4.3.4. Change Detection Accuracy ......................................................................................................... 42 

4.3.5. Change Detection: Response Time .............................................................................................. 45 

4.3.6. Change-absent Trials (Correct Rejections) .................................................................................. 48 

4.3.7. Eye Movements: Fixations on Change Target ............................................................................. 49 

4.3.8. Eye Movement: Non-Target Fixation Patterns............................................................................ 52 

4.4. Discussion ............................................................................................................................................. 54 

4.4.1. Effect of Sleep Loss ....................................................................................................................... 54 

4.4.2. Effect of Target Type .................................................................................................................... 56 

4.4.3. Effect of Driving Environment: Urban vs Rural ........................................................................... 57 

4.4.4. Summary ....................................................................................................................................... 57 



 

Final Report: Effects of sleep loss on change detection while driving (July 2016) 5 

5. Experiment 3 ............................................................................................................................................... 58 

5.1. Background and Rationale ................................................................................................................... 58 

5.2. Method ................................................................................................................................................. 59 

5.2.1. Participants ................................................................................................................................... 59 

5.2.2. Apparatus ...................................................................................................................................... 60 

5.2.3. Road Network ............................................................................................................................... 60 

5.2.4. Stimuli ............................................................................................................................................ 61 

5.2.5. Self-Report Measures ................................................................................................................... 63 

5.2.6. Procedure ...................................................................................................................................... 64 

5.2.7. Data Analysis ................................................................................................................................. 64 

5.3. Results .................................................................................................................................................. 64 

5.3.1. Participants ................................................................................................................................... 64 

5.3.2. Sleep Duration .............................................................................................................................. 65 

5.3.3. Subjective Sleepiness.................................................................................................................... 65 

5.3.4. Change Detection Accuracy ......................................................................................................... 65 

5.3.5. Unexpected Change Detection Accuracy .................................................................................... 66 

5.4. Discussion ............................................................................................................................................. 67 

5.4.1. Effect of Sleep Loss ....................................................................................................................... 67 

5.4.2. Effect of Safety Relevance ............................................................................................................ 68 

5.4.3. Effect of Driving Environment ...................................................................................................... 69 

5.4.4. Simulator Methodology Limitations ............................................................................................ 69 

5.4.5. Summary ....................................................................................................................................... 70 

6. Summary and Conclusions .......................................................................................................................... 71 

7. References ................................................................................................................................................... 75 

 



 

Final Report: Effects of sleep loss on change detection while driving (July 2016) 6 

1. Background 

The Australian Capital Territory (ACT) Road Safety Strategy 2011-2020 (ACT Government, 2011) 
highlights impaired driving as a priority area. Fatigue or sleepiness is one factor that can substantially 
impair driving performance. Sleepiness-related impairment affects not only motor skills involved in 
vehicle manoeuvring, but also higher-order cognitive skills including visual attention. Although driver 
sleepiness is recognised a leading contributing factor in crashes and near-crashes, implicated in 
approximately 15-30% of all road crashes (Åkerstedt, 2000; Connor, 2009; Horne & Reyner, 1995), it is 
difficult to objectively measure fatigue and as a result crash records do not accurately reflect the true 
nature or extent of sleep-related crashes. 

Driver sleepiness is particularly likely to affect ACT drivers when making long interstate trips on rural 
roads, but there is growing recognition within the road safety community that driver sleepiness is also 
responsible for a high proportion of crashes in urban areas. A survey of ACT and NSW drivers found that 
approximately 25% of sleep-related crashes occur in residential areas with speed limits of 50 km/h or 
less, and an additional 30% occur on roads with speed limits between 50 and 80 km/h (Armstrong et al., 
2013). Urban roads, such as those that form the majority of the ACT road network, present drivers with 
unique challenges in that they include a greater variety of road users (i.e., pedestrians, cyclists, 
motorists) and intersections, have higher visual complexity, and the environment changes more rapidly 
compared to in rural areas. 

In lieu of accurate crash data, experimental evidence is vital for understanding the effects of driver 
sleepiness and developing targeted interventions. Sleepiness has been associated with significant 
impairments in simple tasks involving vigilance, psychomotor coordination, and reaction time, as well as 
more complex cognitive processes such as information processing, memory, and decision making. 

One area that has received relatively little attention to date is the effect that sleepiness has on complex 
visual attention tasks, such as change detection. The ability to detect changes is crucial for safe driving: 
in order to make safe decisions we must notice when another vehicle has turned onto the road we are 
driving on, when a bus starts indicating to pull out, or when traffic advisories have been updated with 
new information. It is difficult to quantify the extent of crashes involving change blindness ς the failure 
to detect changes ς but research suggests that failure to detect vehicles or hazards is a contributing 
factor in nearly 10% of serious injury crashes in Australia (Beanland et al., 2013). The current project 
aimed to address this gap by experimentally quantifying whether, to what extent, and under what 
conditions sleepiness impairs change detection while driving. 

1.1. Project Objectives 

The broad objective of this project was to examine how sleep loss affects change detection (and, in turn, 
road safety). The specific objectives were to: 

1. Identify which types of visual changes are most difficult to detect in driving scenes. 

2. Quantify the extent to which change detection performance varies between driving environments of 
varying visual complexity (i.e., urban vs. rural roads). 
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3. Identify the impact of sleep loss on change detection for driving scenes. 

4. Assess whether sleep loss has differential effects on performance in different types of driving scenes 
(e.g., urban vs. rural) or for different categories of stimuli (e.g., vehicles vs. pedestrians). 

5. 9ǾŀƭǳŀǘŜ ŘǊƛǾŜǊǎΩ ŎƘŀƴƎŜ ŘŜǘŜŎǘƛƻƴ ǇŜǊŦƻǊƳŀƴŎŜ ŘǳǊƛƴƎ ǎƛƳǳƭŀǘŜŘ ŘǊƛǾƛƴƎΣ ŎƻƳǇŀǊƛƴƎ ǇŜǊŦƻǊƳŀƴŎŜ 
while alert and sleepy across both urban and rural driving environments. 

6. tǊƻǾƛŘŜ ŜǾƛŘŜƴŎŜ ǊŜƎŀǊŘƛƴƎ ǘƘŜ ŜŦŦŜŎǘ ƻŦ ǎƭŜŜǇ ƭƻǎǎ ƻƴ ŘǊƛǾŜǊǎΩ Ǿƛǎǳŀƭ ŀǘǘŜƴǘƛƻƴΣ ǿƘƛŎƘ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ 
form policy recommendations, education and awareness campaigns aimed at reducing the incidence 
of driving while fatigued in the ACT and surrounding regions. 

The project objectives were achieved through a series of three experiments, with later studies building 
on findings from the earlier work. Experiments 1 and 2 were conducted at the Australian National 
University (ANU) in the Research School oŦ tǎȅŎƘƻƭƻƎȅΩǎ ŜȅŜ-tracking lab. Experiment 3 was conducted 
at Queensland University of Technology (QUT) in the advanced driving simulator at the Centre for 
Accident Research & Road Safety ς Queensland (CARRS-Q). 

1.2. Overview of Experimental Series 

Experiment 1 was designed to assess factors that affect change detection in alert drivers. We used 
photographic stimuli representing urban and rural driving scenarios, and systematically manipulated the 
types of changes that occurred in both ŜƴǾƛǊƻƴƳŜƴǘǎ ǘƻ ŀǎǎŜǎǎ ŘǊƛǾŜǊǎΩ ŀōƛƭƛǘƛŜǎ ǘƻ ŘŜǘŜŎǘ ŘƛŦŦŜǊŜƴǘ ǘȅǇŜǎ 
of changing information. The urban vs. rural distinction is important since drivers encounter different 
types of hazards, and different amounts of visual clutter and complexity, across the two environments. 
Eye movements were recorded using an Eyelink 1000 eye-tracking system, which provides accurate 
recording of eye movements in lab-based tasks. 

Based on the results of Experiment 1, Experiment 2 used a refined set of stimuli to explore impairments 
in change detection that result from sleepiness. Experiment 2 used a counterbalanced within-subjects 
design, so that each driver completed two change detection tasks: one afǘŜǊ ŀ ƎƻƻŘ ƴƛƎƘǘΩǎ ǎƭŜŜǇ ŀƴŘ 
one after experiencing sleep restriction (i.e., a shorter period asleep than normal). The two change 
detection tasks were matched in terms of the types of changes that occurred and the relative difficulty 
of detecting these changes. Sleep restriction was achieved by instructing participants to delay their 
usual bed-time by three hours on the night before the sleep restriction session, but to wake up at their 
regular time. Compliance with sleep restriction was monitored through use of Body Media SenseWear 
armbands, which record physical activity, body temperature and galvanic skin response, and therefore 
provide an objective record of sleep and wake cycles. Eye movements were tracked using the same 
Eyelink 1000 system as in Experiment 1. 

Experiment 3 was conducted in the CARRS-Q advanced driving simulator to explore how sleep loss 
affects change detection while actually driving. Experiment 3 used a counterbalanced within-subjects 
design similar to Experiment 2, with all drivers completing three sessions: an initial baseline 
familiarisation drive and theƴ ǘǿƻ ŜȄǇŜǊƛƳŜƴǘŀƭ ŘǊƛǾŜǎΣ ƻƴŜ ŦƻƭƭƻǿƛƴƎ ŀ ƎƻƻŘ ƴƛƎƘǘΩǎ ǎƭŜŜǇ ŀƴŘ ƻƴŜ 
following a night of sleep restriction. All sessions were at least three days apart, with the order of 
normal sleep vs. sleep restriction counterbalanced between participants. Each session involved driving 
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several laps of a route that took them through an urban environment (with roads representing parts of 
Canberra including civic, the inner north, Parliamentary Triangle, Commonwealth Avenue and 
Northbourne Avenue) and a rural environment, similar to the types of roads in the region of rural NSW 
neighbouring Canberra. During the drive a number of expected and unexpected changes occurred and 
ŘǊƛǾŜǊǎΩ ǊŜǎǇƻƴǎŜǎ ǘƻ ǘƘŜǎŜ ŎƘŀƴƎŜǎ ǿŜǊŜ ǊŜŎƻǊŘŜŘΦ 9ȄǇŜŎǘŜŘ ŎƘŀƴƎŜǎ ƻŎŎǳǊǊŜŘ ŦƻƭƭƻǿƛƴƎ ŀ ōǊƛŜŦ 
blackout period during the simulation; drivers were required to respond to each blackout by indicating 
whether a change occurred and describing any changes they observed. Unexpected changes occurred at 
quasi-random points during the drive and drivers were instructed to indicate and describe any unusual 
events they noticed. For a subset of participants, eye movements were recorded using the faceLAB eye-
tracking system, which enables recording of eye movements during naturalistic tasks. 

1.3. Project Team and Statement of Contributions 

This project was funded through the NRMA-!/¢ wƻŀŘ {ŀŦŜǘȅ ¢ǊǳǎǘΩǎ нлмп ƎǊŀƴǘǎ ǇǊƻƎǊŀƳΦ CǳƴŘƛƴƎ ŦƻǊ 
the project was announced in July 2014 and the project commenced shortly thereafter.  

The original project team named on the funding application was Dr Vanessa Beanland (ANU) and Dr 
Ashleigh Filtness (QUT). 

Dr Grégoire Larue (QUT) joined the project team in January 2016, when Dr Filtness moved to a new 
position at Loughborough University in England, and Ms Alana Hawkins (QUT) was employed as a 
research assistant with substantial responsibility for day-to-day management of Experiment 3, including 
data collection. 

Professor Mike Kyrios (ANU) was appointed as formal project administrator in February 2016, when Dr 
Beanland moved to a new position at the University of the Sunshine Coast. 

Personnel involved in Experiment 1 included: 

¶ Beanland and Filtness were responsible for conceptualisation and design. 

¶ Shannon Webb (ANU research assistant) assisted with the creation of experimental stimuli, 
specifically taking photographs of driving scenes in the Canberra region. 

¶ Erin Walsh (ANU research assistant) assisted with the creation of experimental stimuli, specifically 
editing photographs using image editing software to add and insert relevant objects. 

¶ Rhiannon Jeans (ANU research assistant) was responsible for programming the experiment using the 
SR Builder software, participant recruitment and screening, data collection and initial data 
processing. 

¶ Jolene Cox (ANU special topics student) recruited a sample of participants to independently rate the 
safety relevance of the change in each stimulus image used. 

¶ Beanland was responsible for advanced data processing and analysis, with input from Filtness. 

¶ Beanland and Filtness were responsible for write up and presentation of experimental results. 

Personnel involved in Experiment 2 included: 

¶ Beanland and Filtness were responsible for conceptualisation and design. 
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¶ Jeans was responsible for programming the experiment using the SR Builder software, and for the 
first half of participant recruitment and screening, data collection and initial data processing. 

¶ Alex Smith (ANU research assistant) was responsible for the second half of participant recruitment 
and screening, data collection and initial data processing. 

¶ Beanland and Filtness were responsible for advanced data processing and analysis. 

¶ Filtness and Beanland were responsible for write up and presentation of experimental results. 

Personnel involved in Experiment 3 included: 

¶ Filtness and Beanland were responsible for conceptualisation and design, with input from Larue. 

¶ Sébastien Demmel, Mindy Li (QUT research associates) and Larue were responsible for programming 
the driving simulator scenarios. 

¶ Hawkins was responsible for participant recruitment, screening and data collection. 

¶ Wanda Griffin, Oscar Oviedo Trespalacios, David Rodwell and Adrian Wilson were the QUT simulator 
operators responsible for ensuring the safety of participants during data collection. 

¶ Demmel, Hawkins, Larue and Filtness were responsible for data processing. 

¶ Filtness, Beanland and Larue were responsible for data analysis. 

¶ Filtness, Hawkins, Larue and Beanland were responsible for write up and presentation of 
experimental results. 
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2. Literature Review 

Fatigue or sleepiness is one factor that can substantially impair driving performance. Impairment affects 
not only motor skills involved in vehicle manoeuvring, but also higher-order cognitive skills including 
attention. Most research examining the impact of sleepiness on attention has employed basic vigilance 
paradigms, and there is currently limited research examining the effects of sleepiness and sleep loss on 
more complex visual attention tasks. The current project sought to address this deficit in the literature 
by amalgamating domains of driver sleepiness and change blindness, with the aim of exploring how 
sleep loss affects change detection in complex naturalistic tasks. 

2.1. Driver Sleepiness 

Driver sleepiness represents a significant social and economic cost. Sleep-related crashes account for 
15-30% of all crashes (Åkerstedt, 2000; Connor, 2009; Horne & Reyner, 1995) and are associated with 
higher risk of death and severe injury than other police-reported crashes (Horne & Reyner, 1995). Unlike 
alcohol intoxication, sleepiness and fatigue cannot be quantified and measured by an index such as 
Blood Alcohol Concentration (BAC). This is because fatigue can be regarded as a temporary, 
psychophysiological state that is particularly difficult to quantify in a real-life driving situation (Radun et 
al., 2013), consequently leading to artificial under-reporting. 

Simply analysing ŎǊŀǎƘŜǎ ōŀǎŜŘ ƻƴ ǘƘŜ !/¢Ωǎ mass databases may be leading to an under-reporting of 
fatigue-related driving because ACT figures are based solely on police reports, which have been 
considered to be an under-estimate of the true number of fatigue-related crashes (Attewell et al., 2001). 
Given the difficulties in objectively measuring fatigue and sleepiness in the real world (as compared 
with, for example, speed or intoxication where police may monitor and objectively record the extent of 
violation), education and awareness campaigns that encourage drivers to monitor their own fatigue 
levels are likely to be the most efficient way of reducing driver fatigue in the community. 

A recent survey of 1,609 drivers from ACT and NSW found that most had experienced sleepiness while 
driving in the past 5 years (Armstrong et al., 2011). ACT drivers were more likely than NSW drivers to 
experience driver sleepiness (71% vs. 62%). More concerning, ACT drivers were also more likely to 
continue driving despite feeling sleepy and were more likely to report multiple sleep-ǊŜƭŀǘŜŘ άŎƭƻǎŜ 
Ŏŀƭƭǎέ όi.e., near-crash incidents). Overall these results suggest that ACT drivers do not take adequate 
precautions to avoid driving while fatigued and that more work is needed to raise driver awareness of 
the negative consequences of driving while sleepy. 

The under-reporting of fatigue in police data means that experimental research is vital for 
understanding the road safety implications of driver sleepiness. For example, experimental research has 
revealed that vigilance decrements after 17 hours awake is equivalent to that of a driver with 0.05% BAC 
(Dawson & Reid, 1997). This suggests that Canberra drivers who plan to drive to the NSW south coast on 
CǊƛŘŀȅ ŜǾŜƴƛƴƎ ŀŦǘŜǊ ŀ Ŧǳƭƭ ŘŀȅΩǎ ǿƻǊƪ Ƴŀȅ ŜȄǇŜǊƛŜƴŎŜ ƛƳǇŀƛǊƳŜƴǘ ŜǉǳƛǾŀƭŜƴǘ ǘƻ ƛƭƭŜƎŀƭ ƭŜǾŜƭǎ ƻŦ 
intoxication. 

There are obvious safety concerns in conducting driver sleepiness research on real roads. Driving 
simulators are a safe alternative, as they permit researchers to create controlled environments in which 
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they can measure the impact of sleepiness on driving (Liu et al., 2009). Driving simulator studies reveal 
that vehicle control is impaired following sleep loss (Anund et al., 2008), resulting in increased lane 
deviations (Filtness et al., 2012). Most previous research investigating driver sleepiness focused on rural 
highway driving, as sleep-related crashes are particularly likely to occur during monotonous driving 
conditions. However, among ACT and NSW drivers approximately 25% of sleep-related crashes occur in 
residential areas with speed limits of 50 km/h or less and a further 30% occur on roads with speed limits 
between 50 and 80 km/h (Armstrong et al., 2013). As such, driver sleepiness in urban environments has 
a significant impact on overall road safety, but is an area that has been neglected by previous research 
and policy. Consequently there is poor understanding of how sleepiness and fatigue affect driver 
performance in urban environments and there are no targeted countermeasures aimed at reducing 
driving while fatigued in urban environments. 

Although it has been established that sleepiness impairs vehicle control (i.e., manual handling and 
manipulation of controls) there are also implications for other vital skills necessary for safe driving. It is 
well established that performance on simple vigilance and reaction time tasks is impaired by sleep loss 
(e.g., Belenky et al., 2003; Dinges et al., 1997; Van Dongen et al., 2003). More complex cognitive 
processes, such as information processing and planning ability, are also impaired following sleep loss 
(Horne, 2012). Finally, sleep loss also ƛƳǇŀƛǊǎ ƻƴŜΩǎ ability to complete dual task paradigms (Haavisto et 
al., 2010) and makes drivers more susceptible to distraction, leading them to make a greater number of 
glances away from the road (Anderson & Horne, 2013). 

Furthermore, sleep loss has implications for vision and oculomotor control (i.e., eye movements and 
blinks). Sleep loss increases double vision (Clark & Warren, 1939) and exorphia, or divergence of the 
eyes outward (Horne, 1975). Recently it has been noted that sleep deprivation leads to decreased 
oculomotor function (De Gennaro et al., 2000; Fransson et al., 2008), which impairs visual search 
performance (De Gennaro et al., 2001). This has prompted the suggestion that oculomotor control could 
be used as a fatigue detection measure (Goldich et al., 2010; McClelland et al., 2010). The interaction 
between sleep loss and eye movements suggests a mechanism by which sleep loss could influence 
change blindness, since change blindness is also significantly influenced by eye movements, as discussed 
further in Section 2.2. This has potential implications for road safety as saccadic velocity (i.e., speed of 
eye movements) is negatively correlated with simulator vehicle crashes (Rowland et al., 2005; Russo et 
al., 1999, 2003). Although sleep loss impairs several skills that are vital to safe driving in urban 
environments, no previous research has shown a direct relationship between sleepiness and urban 
driving safety. 

2.2. Change Blindness 

Change blindness is psychological phenomenon in which observers either completely fail to detect 
changes within a visual scene, or experience a substantial delay in detecting a change within their visual 
environment (Rensink et al., 1997). Change blindness is particularly likely to occur when visual changes 
take place during a disruption to the visual scene, such as when a person is blinking, making an eye 
movement, or has their view obscured briefly (e.g., McConkie & Currie, 1996; Pashler, 1988; Rensink et 
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al., 1997; Simons & Levin, 1998), as the disruption masks visual transients that would otherwise make 
the change obvious to the observer. 

Change blindness can occur for both expected and unexpected changes, across a wide range of visual 
stimuli including simple arrays of letters and digits (Pashler, 1988), photographs (Rensink et al., 1997) 
and even a person in a real-life conversation (Simons & Levin, 1998). 

Several previous studies have examined the incidence of change blindness while driving using a range of 
methods, including both driving simulation and computer-based experiments similar to the methods 
employed in the current project. The most common methods used in driving-related change detection 
research are flicker tasks, one-shot tasks, and simulated driving scenarios. 

In flicker tasks, two alternating images are presented for a fraction of a second each (typically 240-500 
ms), separated by a brief (80-500 ms) blank screen that serves to mask visual transients (Rensink et al., 
мффтύΦ ¢ƘŜ ǎŜǉǳŜƴŎŜ άŦƭƛŎƪŜǊǎέ ōŜǘǿŜŜƴ ǘƘŜ ǘǿƻ ƛƳŀƎŜǎ ǳƴǘƛƭ ǘƘŜ ƻōǎŜǊǾŜǊ ŘŜǘŜǊƳƛƴes whether the two 
images are the same or different. 

One-shot tasks use a similar format, with two images presented for a fixed duration separated by a blank 
screen, but each image is presented only once and stimulus durations are often longer (e.g. 10-15 s; 
Zhao et al., 2014). As there is limited opportunity to compare the images, accuracy is typically lower in 
one-shot tasks compared with flicker tasks. 

Simulated driving paradigms embed change detection tasks within a driving simulator scenario. Some 
simulator studies mask changes with brief occlusion periods (Lee et al., 2007; Shinoda et al., 2001; 
Velichkovsky et al., 2002; White & Caird, 2010), similar to the blank screens used in flicker and one-shot 
tasks, whereas others have changes occur more naturalistically, for example changing a sign between 
repeated drives on the same road (Charlton & Starkey, 2013; Harms & Brookhuis, 2016; Martens & Fox, 
2007) or during an eye movement (Velichkovsky et al., 2002). 

Previous research has examined how change detection in driving scenes is affected by several variables, 
including target relevance, driving experience, familiarity with the road environment, and secondary 
task engagement. Key findings pertaining to each of these topics are summarised in the following 
subsections. 

2.2.1. Target Relevance  

A robust finding in change blindness research is that observers are faster and more accurate at 
detecting changes to targets that have greater relevance, such as targets that are central to 
understanding the scene (Rensink et al., 1997) or targets that are personally meaningful (Marchetti et 
al., 2006). Similarly, studies consistently reveal that observers are faster and more accurate at detecting 
changes in road scenes when the targets are driving-relevant, compared with driving-irrelevant targets 
(Galpin et al., 2009; Mueller & Trick, 2013; Velichkovsky et al., 2002; Zhao et al., 2014). One caveat to 
ǘƘŜǎŜ ŦƛƴŘƛƴƎǎ ƛǎ ǘƘŀǘ Ƴŀƴȅ ǎǘǳŘƛŜǎ ǳǎŜ ǉǳƛǘŜ ōǊƻŀŘ ŘŜŦƛƴƛǘƛƻƴǎ ƻŦ άǊŜƭŜǾŀƴǘέ ŀƴŘ άƛǊǊŜƭŜǾŀƴǘέΦ 9ȄŀƳǇƭes 
of relevant targets include vehicles, pedestrians and road signs, whereas examples of irrelevant targets 
include buildings, dumpsters and mailboxes (Galpin et al., 2009; Mueller & Trick, 2013; Velichkovsky et 
al., 2002). This raises a potential confound, in that the irrelevant targets are all stationary objects, which 
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ŀǊŜ ǘȅǇƛŎŀƭƭȅ ǇƻǎƛǘƛƻƴŜŘ ŀǿŀȅ ŦǊƻƳ ǘƘŜ ǊƻŀŘ ŀƴŘΣ ƛƴ ǘǳǊƴΣ ŦŀǊǘƘŜǊ ŦǊƻƳ ǘƘŜ ŘǊƛǾŜǊΩǎ ŎŜƴǘǊŀƭ ŦƻŎǳǎΦ 
Moreover, these studies group together several types of driving-relevant targets, which vary 
considerably in their potential relevance to driving safety. 

Velichkovsky et al. (2002) also found faster and more accurate change detection for task-relevant stimuli 
in road scenes, and noted that change blindness was stronger in dynamic stimuli compared to static 
stimuli. This suggests that change blindness may be more likely to occur during simulated driving (and 
potentially real driving) than in lab-based experiments. This is, in part, due to eye movements: change 
blindness can occur as a result of saccadic suppression (i.e., when visual input from the retina to the 
brain is temporarily suppressed during saccades or eye movements). For this reason, it is particularly 
relevant to explore the role that eye movements play in successful vs. unsuccessful change detection. 

Two simulator studies have provided more systematic manipulation of safety-relevance within a single 
class of targets (Lee et al., 2007; Shinoda et al., 2001).  

In the first study, by Shinoda et al. (2001), the same change occurred during each trial ς ŀ άƴƻ ǇŀǊƪƛƴƎέ 
ǎƛƎƴ ŎƘŀƴƎŜŘ ƛƴǘƻ ŀ άǎǘƻǇέ ǎƛƎƴ ς but target placement was systematically manipulated to alter its 
ǊŜƭŜǾŀƴŎŜ ƛƴ ǊŜƭŀǘƛƻƴ ǘƻ ŘǊƛǾŜǊǎΩ ŜȄǇŜŎǘŀǘƛƻƴǎ. Drivers were significantly less likely to notice the changing 
sign when they were following another car, or when it occurred mid-block, compared with when it 
occurred at an intersection (Shinoda et al., 2001). Arguably, stop signs are equally relevant regardless of 
where they appear; however, drivers expect signs at intersections to convey more meaningful 
information (e.g., whether one has priority or must give way to other traffic).  

In a later ǎǘǳŘȅΣ [ŜŜ Ŝǘ ŀƭΦ όнллтύ ǘŜǎǘŜŘ ŘǊƛǾŜǊǎΩ ŀōƛƭƛǘȅ ǘƻ ŘŜǘŜŎǘ ŎƘŀƴƎŜǎ ǘƻ ǾŜƘƛŎƭŜǎΣ ǿƘƛŎƘ ǿŜǊŜ ŜƛǘƘŜǊ 
parked, moving ahead of the participant, or moving behind the participant. Drivers were most sensitive 
to lead vehicles moving closer to them (i.e., simulating a sudden braking movement) and were least 
sensitive to changes involving parked vehicles. This suggests that drivers are more efficient at detecting 
safety-relevant changes; however, the authors noted that target location co-varied with safety 
relevance, and as such the results cannot be solely attributed to safety relevance without further 
research (Lee et al., 2007). 

Although several studies have compared change blindness for task-relevant vs. irrelevant stimuli, the 
choice of stimuli has mainly been restricted to objects that have indirect relevance to road safety, such 
as road signs. As such, one aim of the current project was to more comprehensively explore how the 
nature of the stimuli affects change blindness vs. change detection, by comparing stimuli with varying 
levels of relevance to the task of safe driving. 

2.2.2. Driving Experience  

Change blindness research in non-driving domains consistently indicates that domain-experts are less 
susceptible to change blindness compared to domain-novices, but only for expertise-related changes 
(Feil & Mestre, 2010; Reingold et al., 2001; Werner & Thies, 2000). For instance, American football 
experts are faster than non-experts at detecting changes to football-related images that meaningfully 
alter game formations, but not at non-meaningful or non-football-related changes (Werner & Thies, 
2000). Comparable findings have been obtained for chess masters (Reingold et al., 2001) and advanced 
physics students (Feil & Mestre, 2010). Based on this it seems logical that driving experience would 
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similarly influence change detection ability in driving-related scenes; however, empirical findings have 
been mixed (Zhao et al., 2014). 

One method of examining effects of driving experience is to compare drivers with non-drivers, that is, 
ǇŜƻǇƭŜ ǿƘƻ ƘŀǾŜ ƴŜǾŜǊ ƘŜƭŘ ŀ ŘǊƛǾŜǊΩǎ ƭƛŎŜƴŎŜΦ !ƴ 9ƴƎƭƛǎƘ ǎǘǳŘȅ ŎƻƳǇŀǊƛƴƎ ƴƻƴ-drivers and drivers 
found no significant association between driving experience and performance on a driving-related flicker 
change detection task, although both groups were faster at detecting driving-relevant compared with 
irrelevant changes (Galpin et al., 2009). The authors suggested that their driver group may not have had 
sufficient experience (average 70 months) to demonstrate superior performance. Following this, a 
Chinese study compared change detection ability in non-drivers and drivers with an average of 33 
months experience (Zhao et al., 2014). The Chinese study used a one-shot task and inserted a central 
fixation point on half the trials. Drivers and non-drivers performed similarly on trials with no fixation 
ǇƻƛƴǘΣ ǊŜǇƭƛŎŀǘƛƴƎ DŀƭǇƛƴ Ŝǘ ŀƭΦΩǎ όнллфύ ǊŜǎǳƭǘǎΦ ²ƘŜƴ ǘƘŜ ŦƛȄŀǘƛƻƴ Ǉƻƛƴt was present, drivers and non-
drivers also performed similarly for centrally-located and driving-irrelevant changes, whereas non-
drivers were significantly less accurate than drivers at detecting driving-related and peripheral changes 
(Zhao et al., 2014). The authors suggested driving experience helps facilitate more efficient processing 
of driving-related and peripheral elements while fixating centrally. 

Beyond comparing drivers and non-drivers, another method for studying experience effects is to 
compare change detection abilities between drivers with varying experience levels. In a US study 
comparing young novice drivers (average 6 months experience) to more experienced young drivers 
όŀǾŜǊŀƎŜ т ȅŜŀǊǎΩ ŜȄǇŜǊƛŜƴŎŜύΣ ōƻǘƘ ƎǊƻǳǇǎ ǇŜǊŦƻǊƳŜŘ ǎƛƳƛƭŀǊƭȅ ƻƴ ŘǊƛǾƛng-related changes but novice 
drivers were less accurate at detecting irrelevant changes (Mueller & Trick, 2013). One explanation is 
that experienced drivers are more efficient at processing driving-related information, which means they 
have greater cognitive capacity remaining for processing irrelevant information. This is consistent with 
[ŀǾƛŜΩǎ όмффрύ ƭƻŀŘ ǘƘŜƻǊȅΣ ǿƘƛŎƘ Ǉƻǎƛǘǎ ǘƘŀǘ ǘŀǎƪ-irrelevant information will only be selected into 
conscious awareness under conditions of low task load (i.e., when the primary task is less cognitively 
demanding)Φ Lǘ ƛǎ ŀƭǎƻ ŎƻƴǎƛǎǘŜƴǘ ǿƛǘƘ ½Ƙŀƻ Ŝǘ ŀƭΦΩǎ όнлмпύ ŦƛƴŘƛƴƎǎΣ ǿƘŜǊŜōȅ ŘǊƛǾŜǊǎ ǎƘƻǿŜŘ ǎǳǇŜǊƛƻǊ 
detection of peripheral changes compared with non-drivers. 

Finally, an Australian study found that after accounting for simple reaction time differences, drivers with 
ƭŜǎǎ ǘƘŀƴ о ȅŜŀǊǎΩ ŜȄǇŜǊƛŜƴŎŜ ǿŜǊŜ ǎƛƎƴƛŦƛŎŀƴǘƭȅ faster at detecting driving-related changes, compared 
ǿƛǘƘ ŘǊƛǾŜǊǎ ǿƘƻ ƘŀŘ ƳƻǊŜ ǘƘŀƴ мл ȅŜŀǊǎΩ ŜȄǇŜǊƛŜƴŎŜ ό²Ŝǘǘƻƴ Ŝǘ ŀƭΦΣ нлмлύΦ IƻǿŜǾŜǊΣ ƛǘ ƛǎ ǿƻǊǘƘ ƴƻǘƛƴƎ 
thaǘ ǘƘƛǎ ǎǘǳŘȅΩǎ άƴƻǾƛŎŜέ ƎǊƻǳǇ ŀŎǘǳŀƭƭȅ ƘŀŘ ŀ ǎƛƳƛƭŀǊ ƭŜǾŜƭ ƻŦ ŜȄǇŜǊƛŜƴŎŜ ǘƻ ǘƘŜ ǇŀǊǘƛŎƛǇŀƴǘǎ ŎƻƴǎƛŘŜǊŜŘ 
experienced drivers in other studies (e.g., Zhao et al., 2014) and were on average 19 years younger than 
the comparison group of experienced drivers in the same study (Wetton et al., 2010). Overall it seems 
that differences in change detection ability may be most likely to emerge when comparing drivers to 
either non-ŘǊƛǾŜǊǎΣ ƻǊ ǘƘƻǎŜ ǿƛǘƘ ƻƴƭȅ ŀ ŦŜǿ ƳƻƴǘƘǎΩ ŜȄǇŜǊƛŜƴŎŜΦ 

2.2.3. Familiarity 

A few studies have explored the effect of environmental familiarity on change detection while driving 
(Charlton & Starkey, 2013; Harms & Brookhuis, 2016; Martens & Fox, 2007). These studies use broadly 
similar methodology: all recruited groups of drivers to complete 20-25 simulated drives over a period of 
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several days or weeks. Whereas most studies assess short-term changes ς i.e., detecting that an object 
has appeared, disappeared, moved or changed within the past second ς studies that explore the effects 
of familiarity usually test long-term change detection, such as whether drivers notice that a speed limit 
has been altered since the previous time they drove on that road. 

Overall, these studies suggest that repeatedly driving the same route increases drƛǾŜǊǎΩ ŀōƛƭƛǘȅ ǘƻ 
recognise certain aspects of the environment but impairs others. For instance, drivers are better at 
recognising which roads signs belong on a route (Martens & Fox, 2007) and are faster at detecting a 
target vehicle when they are more familiar with the route (Charlton & Starkey, 2013). However, these 
benefits appear to be offset by substantial change blindness to other aspects of the environment, 
particularly road signs, even when the changes has clear safety relevance. For instance, many drivers 
failed to detect when an intersection sign changed from granting them priority to requiring them to give 
way (Martens & Fox, 2007), when speed limits on dynamic speed signs changed (Harms & Brookhuis, 
нлмсύΣ ƻǊ ǿƘŜƴ ǘƘŜ ǎƛƎƴΩǎ ƭŀƴƎǳŀƎŜ ŎƘŀƴƎŜŘ ŦǊƻƳ English to German (Charlton & Starkey, 2013). Drivers 
also exhibited robust change blindness to the addition or removal of roadside buildings, but were much 
better at detecting changes to road markings, even after repeated exposure (Charlton & Starkey, 2013). 
This suggests that when driving on familiar routes, drivers pay relatively less attention to the roadside ς 
including safety-relevant signs ς but maintain focus on the road itself. 

2.2.4. Secondary Task Engagement 

Studies examining the impact of secondary task engagement on driving-related change detection have 
all indicated that engagement in a cognitively demanding secondary task significantly impairs change 
detection (e.g., Lee et al., 2007; McCarley et al., 2004; Richard et al., 2002; White & Caird, 2010). These 
effects have been demonstrated using flicker tasks with photographs depicting road scenes (McCarley et 
al., 2004; Richard et al., 2002) and also in driving simulator scenarios in which changes occur after brief 
blackouts (100ms to 1s; Lee et al., 2007; White & Caird, 2010). 

The specific aspects of change detection affected by dual-task engagement differ between studies, and 
include accuracy, sensitivity and response time. Early research on this topic found that concurrent 
engagement in an auditory working memory task resulted in slower change detection but did not affect 
accuracy (Richard et al., 2002). However, subsequent research has found that responding to auditory 
messages and engaging in hands-free phone conversations (but not passively listening to a 
conversation) impairs change detection accuracy (Lee et al., 2007; McCarley et al., 2004). Notably, 
drivers were equally likely to fixate change targets when talking on a phone, but failed to consciously 
process the change (McCarley et al., 2004). Finally, White and Caird (2010) found that young adult 
drivers who were accompanied by an attractive opposite-sex passenger were less likely to detect 
hazards, compared to participants who were driving alone. Together these findings suggest that driver 
ŘƛǎǘǊŀŎǘƛƻƴ Ŏŀƴ ƛƴŎǊŜŀǎŜ ŎƘŀƴƎŜ ōƭƛƴŘƴŜǎǎ ŀƴŘ άƭƻƻƪŜŘ-but-failed-to-ǎŜŜέ ŜǊǊƻǊǎΦ 

2.3. Sleep and Change Blindness 

There has been almost no previous research examining the relationship between sleep and change 
blindness or related phenomena. 
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Some research has compared change detection performance between good sleepers and people with 
insomnia or other sleep disorders (e.g., Marchetti et al., 2006). This research found that insomniacs are 
better at detecting changes to sleep-related stimuli, which suggests that they have an attentional bias 
towards sleep-related stimuli. However, this study did not look at change detection more broadly so it is 
unclear whether sleep loss affects generic change detection abilities. Further, the study looked 
specifically at people with sleep related disorders, not at good sleepers who have experienced a 
temporary period of sleep loss, so the results are not generalizable to the broader population. 

2.4. Summary and Conclusions 

In-depth research has shown that driver fatigue due to sleepiness or sleep loss is a leading contributory 
factor in road crashes and should be considered a significant road safety issue for all road users. While 
archetypal sleep-related crashes (i.e., where a single vehicle runs off the road into a tree on a 
monotonous country road) are relatively easy to identify and are well researched, atypical sleep-related 
crashes on urban roads are poorly understood and hard to identify. 

This project was designed to a significant gap in the literature by improving understanding of visual 
attention impairments relating to sleep loss in both urban and rural driving environments. Given the 
relationship between change blindness and eye movements, it was hypothesised that sleep loss would 
impair change detection, resulting in reduced accuracy and/or longer response times in change 
detection tasks. Individuals experiencing sleep loss typically demonstrate increased blink rate and spend 
a longer percentage of time with their eyes closed. These changes in blink patterns may result in slower 
change detection and increased change blindness, since change blindness is more likely occur during 
blinks and eye movements. 

In addition to changes in blink patterns, it is possible that sleepy drivers may show differential patterns 
of visual scanning. In particular, they may attempt to compensate for their sleepiness by focusing their 
eyes on the road ahead, at the expense of detecting peripheral information on the roadside. This type of 
compensatory behaviour is observed during distracted driving (e.g., Engström et al., 2005) and 
distracted drivers show greater impairment at responding to peripheral vs. central hazards (Haque & 
Washington, 2013). If similar results are observed as a result of sleep loss, then it is likely that drivers 
would have greater impairment at detecting changes to peripheral objects including signs and hazards 
on the roadside. 
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3. Experiment 1 

3.1. Background and Rationale 

The ability to detect changes is crucial for safe driving. In order to make appropriate decisions we must 
notice when another vehicle pulls out ahead of us, when an in-vehicle alert appears, or when advisory 
signs have been updated. Research examining change detection while driving (e.g., Charlton & Starkey, 
2013; Galpin et al., 2009; Velichkovsky et al., 2002; Zhao et al., 2014) suggests that drivers often 
experience change blindness, which is delayed or failed change detection (Rensink et al., 1997). 
Although it is difficult to quantify the extent of crashes involving change blindness, accurate change 
detection is associated with safe decision-making (Caird et al., 2005; Edwards et al., 2008) and in-depth 
crash analyses suggest approximately 9% of serious injury crashes involve a driver failing to detect 
hazards (Beanland et al., 2013). 

Several paradigms have been used to explore change blindness (for a review see Jensen et al., 2011). 
The diversity of paradigms stems from the fact that change blindness can occur for expected or 
unexpected changes, and can result from various visual disruptions including blinks, saccades, or 
occlusion (Beanland et al., 2015).  

The most common research methods used in driving-related change detection research are flicker tasks, 
one-shot tasks, and simulated driving scenarios. In flicker tasks, two alternating images are presented 
for a fraction of a second each (typically 240-500 ms), separated by a brief (80-500 ms) blank screen that 
serves to mask visual transients (RŜƴǎƛƴƪ Ŝǘ ŀƭΦΣ мффтύΦ ¢ƘŜ ǎŜǉǳŜƴŎŜ άŦƭƛŎƪŜǊǎέ ōŜǘǿŜŜƴ ǘƘŜ ǘǿƻ ƛƳŀƎŜǎ 
until the observer determines whether the two images are the same or different. One-shot tasks use a 
similar format, with two images presented for a fixed duration separated by a blank screen, but each 
image is presented only once and stimulus durations are often longer (e.g. 10-15 s; Zhao et al., 2014). As 
there is limited opportunity to compare the images, accuracy is typically lower in one-shot tasks than in 
flicker tasks. Simulated driving paradigms embed change detection tasks within a driving simulator 
scenario. Some simulator studies mask changes with brief occlusion periods (Lee et al., 2007; Shinoda et 
al., 2001; Velichkovsky et al., 2002; White & Caird, 2010), similar to the blank screens used in flicker and 
one-shot tasks, whereas others have changes occur more naturalistically; for example, changing a sign 
between repeated drives on the same road (Charlton & Starkey, 2013; Harms & Brookhuis, 2016; 
Martens & Fox, 2007) or during an eye movement (Velichkovsky et al., 2002). 

Previous research has examined how change detection in driving scenes is affected by several variables, 
including target relevance, driving experience, familiarity with the road environment, and secondary 
task engagement. Section 2.2 provides a full review of the relevant literature, but key findings are 
summarised briefly below. 

Research has consistently demonstrated that observers are faster and more accurate at detecting 
changes that have greater relevance to driving (Galpin et al., 2009; Lee et al., 2007; Mueller & Trick, 
2013; Shinoda et al., 2001; Velichkovsky et al., 2002; Zhao et al., 2014). However, these studies typically 
employ targets with only indirect relevance to driving, often have systematic differences between 
relevant and irrelevant targets, and collapse results across several distinct types of targets to form their 
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άǊŜƭŜǾŀƴǘέ ŀƴŘ άƛǊǊŜƭŜǾŀƴǘέ ŎŀǘŜƎƻǊƛŜǎΦ ¢Ƙƛǎ ƘƛƎƘƭƛƎƘǘǎ ǎŜǾŜǊŀƭ ŀǾŜƴǳŜǎ ŦƻǊ ŎƻƴŘǳŎǘƛƴƎ ƳƻǊŜ ƴǳŀƴŎŜŘ 
investigation into the relationship between change detection and target relevance. 

Findings regarding the effects of driving experience on change detection are mixed (Zhao et al., 2014), in 
part due to the fact that different studies use varying methods and forms of comparison (e.g., some 
compare drivers and non-drivers, others compare drivers of varying experience levels). Some studies 
find that driving experience is associated with superior change detection, but only for certain types of 
changes (Mueller & Trick, 2013) or under specific conditions, such as in the presence of a central fixation 
point (Zhao et al., 2014), whereas other studies find no relationship between driving experience and 
change detection (Galpin et al., 2009; Wetton et al., 2010). Given these inconsistencies, the most 
sensible approach for research exploring driving-related change detection is to exclude novice drivers 
and those with very little experience, to ensure that there is no potential for experience-related effects 
ǘƻ ŎƻƴŦƻǳƴŘ ǘƘŜ ǎǘǳŘȅΩǎ ǊŜǎǳƭǘǎ. 

3.1.1. The Current Study 

Based on the review of previous change detection research in Section 2, it is apparent that change 
blindness occurs in driving environments, but that the extent of change blindness varies depending on 
characteristics of the changed object. Characteristics such as object size or physical salience (Koustanaï 
et al., 2012) do not predict the efficiency of change detection in naturalistic tasks. Rather, semantic 
object properties (e.g., relevance to driving) influence the likelihood and speed of change detection. 
Previous studies examining this have either defined task relevance quite broadly (Galpin et al., 2009; 
Mueller & Trick, 2013; Velichkovsky et al., 2002; Zhao et al., 2014) or have used only a single class of 
targets (Lee et al., 2007; Shinoda et al., 2001), so there is scope for more systematic investigation of the 
relationship between target characteristics and change detection. 

¢ƘŜ ŎǳǊǊŜƴǘ ǎǘǳŘȅ ǿŀǎ ŘŜǎƛƎƴŜŘ ǘƻ ŀǎǎŜǎǎ ŘǊƛǾŜǊǎΩ ŎƘŀƴƎŜ ŘŜǘŜŎǘƛƻƴ ŜŦŦƛŎƛŜƴŎȅ in urban and rural driving 
scenes across a range of target types including vehicles, vulnerable road users, signs, and roadside 
objects. All of these targets are potentially relevant to safe driving depending on the context in which 
they appear, so we systematically manipulated the change context within each category of targets. This 
resulted in a total of seven target categories (cars, motorcycles, road signs, traffic lights, pedestrians, 
animals, and trees), with half of the trials in each category containing changes that have high potential 
for safety impact (i.e., requiring monitoring of a potential hazard or a response by the driver) and half 
containing changes that have low or no potential for safety impact (i.e., the driver can continue without 
any change in behaviour or situation awareness). This allowed us to explore which factor is more 
influential in change detection, the type of target or its potential safety impact, and whether these two 
factors interact. In addition to standard measures of accuracy and response time (RT), eye movements 
were recorded to provide a more comprehensive understanding of change detection occurs (i.e., by 
ŜȄŀƳƛƴƛƴƎ άƭƻƻƪŜŘ-but-failed-to-ǎŜŜέ ŜǊǊƻǊǎ ŀƴŘ ƛƳǇƭƛŎƛǘ ŎŀǇǘǳǊŜ ƻŦ ŀǘǘŜƴǘƛƻƴύΦ 
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3.2. Method 

3.2.1. Participants 

Twenty-six drivers (15 female, 11 male) aged 20-43 years (M = 22.9, SD = 4.7) provided informed 
consent and participated voluntarily in exchange for AUD$20. Data from one additional participant was 
discarded due to technical errors. All participants had normal or corrected-to-normal visual acuity (as 
measured using a near vision chart), held a current full ǳƴǊŜǎǘǊƛŎǘŜŘ !ǳǎǘǊŀƭƛŀƴ ŘǊƛǾŜǊΩǎ ƭƛŎŜƴŎŜ, and 
drove at least once a week within the Canberra region. Ethical aspects of the research were approved by 
the Australian National University Human Research Ethics Committee (protocol 2014/458). 

3.2.2. Apparatus 

±ƛǎǳŀƭ ǎǘƛƳǳƭƛ ǿŜǊŜ ǇǊŜǎŜƴǘŜŘ ƻƴ ŀ нтέ !ǇǇƭŜ ƛaŀŎ ŘŜǎƪǘƻǇ ŎƻƳǇǳǘŜǊΦ !ƴ 9ȅŜƭƛƴƪ мллл ŜȅŜ-tracker, with 
a reported spatial accuracy within 0.25-0.5°, was used to monitor eye movements at a temporal 
frequency of 1000Hz. Head position was fixed using a chinrest with a viewing distance of 95cm, yielding 
a display area of 30.3° × 19.4° visual angle. Stimulus presentation and data acquisition were controlled 
via SR Research Experiment Builder. 

3.2.3. Stimuli 

Experimental stimuli included 200 image pairs depicting driving scenes, which constituted 50 urban 
change-present pairs, 50 rural change-present pairs, 50 urban change-absent pairs and 50 rural change-
absent pairs. Each image subtended 23.0° × 17.5° visual angle and was taken using a digital camera 
mounted on the dashboard of a station wagon. Urban images were taken in central Canberra (civic, 
inner north, Parliamentary Triangle) and rural images were taken on rural roads in surrounding regions. 
In change-absent pairs the two images displayed were identical, whereas in change-present pairs one of 
the images was edited to add, remove or alter a single driving-relevant target. Images used were 
selected from a larger sample (N > 2000) of photographs so that change-absent and change-present 
images could be matched in terms of the roads, road users and visual complexity within scenes. 

Within both the urban and rural environments, five types of target objects were changed. In the urban 
scenes change targets were either cars, motorcycles, road signs, traffic lights or pedestrians, with 10 
images for each category. In the rural scenes change targets were either cars, motorcycles, road signs, 
trees or animals, again with 10 images for each category. For the three categories that occurred in both 
urban and rural scenes (i.e., cars, motorcycles, and road signs) the nature of the changes was matched 
so that equivalent changes occurred in both environments.  

Within each target type, the potential safety impact of the change was systematically manipulated, so 
that half the images contained a change with high safety impact (e.g., vehicle appears/disappears 
immediately in front of the participant, change to speed limit sign) and half contained a change with low 
potential safety impact (e.g., parked vehicle appears/disappears, change to bicycle lane advisory sign 
content). The key differentiator between high- and low-impact images was that high-impact changes 
would require a driver to change their behaviour (e.g., adjust travel speed, brake, monitor a potential 
hazard), whereas low-impact changes did not require any changes to behaviour or situation awareness. 
Because previous rŜǎŜŀǊŎƘ Ƙŀǎ ǎǳƎƎŜǎǘŜŘ ǘƘŀǘ ŘǊƛǾŜǊǎΩ ǎǳōƧŜŎǘƛǾŜ Ǌƛǎƪ ǇŜǊŎŜǇǘƛƻƴǎ Řƻ ƴƻǘ ŀƭǿŀȅǎ ŀƭƛƎƴ 
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with objective assessments of risk (Charlton et al., 2014), we recruited a separate sample of 21 
experienced drivers aged 25-40 years to rate the safety relevance of each change on an 11-point scale 
from 0 (not at all safety relevant) to 10 (highly safety relevant). The average rating for each image pair 
was then used as the safety relevance rating for each trial. 

LƳŀƎŜ ǇŀƛǊǎ ǿŜǊŜ ǇǊŜǎŜƴǘŜŘ ǳǎƛƴƎ ŀ άŦƭƛŎƪŜǊέ ǎŜǉǳŜƴŎŜΣ ƛƴ ǿƘƛch one image was presented for 500ms, 
followed by a 500ms blank grey screen, followed by the second image for 500ms and then another 
500ms blank (see Figure 3-1). The cycle of alternating images and blanks continued until the participant 
responded, or for 30 s, whichever occurred first. Participants were instructed to decide as quickly as 
possible whether a change occurred and then immediately press the space bar to register their decision. 
They were then prompted to report whether a change occurred and, if applicable, the change target. If 
participants failed to respond within 30 s the program automatically proceeded to a response screen 
ǘƘŀǘ ŀǎƪŜŘ ǘƘŜƳ ǘƻ ƛƴŘƛŎŀǘŜ ǿƘŜǘƘŜǊ ŀ ŎƘŀƴƎŜ ƻŎŎǳǊǊŜŘΦ !ǾŀƛƭŀōƭŜ ǊŜǎǇƻƴǎŜ ƻǇǘƛƻƴǎ ƛƴŎƭǳŘŜŘ άȅŜǎέ ŀƴŘ 
άƴƻέ ŦƻǊ ǿƘŜǘƘŜǊ ŀ ŎƘŀƴƎŜ ƻŎŎǳǊǊŜŘΣ ŀƴŘ άǾŜƘƛŎƭŜέΣ άƳƻǘƻǊŎȅŎƭŜέΣ άōƛŎȅŎƭŜέΣ άǇŜǊǎƻƴέΣ άŀƴƛƳŀƭέΣ άǘǊŜŜέΣ 
άōǳƛƭŘƛƴƎέΣ άǎƛƎƴέΣ ŀƴŘ άǘǊŀŦŦƛŎ ƭƛƎƘǘέ ŦƻǊ ŎƘŀƴƎŜ ǘŀǊƎŜǘΦ /ƘŀƴƎŜ-ǇǊŜǎŜƴǘ ǘǊƛŀƭǎ ǿŜǊŜ ŎƻƴǎƛŘŜǊŜŘ άŎƻǊǊŜŎǘέ 
if the observer correctly identified the change target, but were ŎƻƴǎƛŘŜǊŜŘ άƛƴŎƻǊǊŜŎǘέ ƛŦ ǘƘŜȅ ǊŜǇƻǊǘŜŘ 
no change or failed to select the correct change target. Change-ŀōǎŜƴǘ ǘǊƛŀƭǎ ǿŜǊŜ ŎƻƴǎƛŘŜǊŜŘ άŎƻǊǊŜŎǘέ 
ƛŦ ǘƘŜ ƻōǎŜǊǾŜǊ ǊŜǇƻǊǘŜŘ ƴƻ ŎƘŀƴƎŜΣ ŀƴŘ ǿŜǊŜ ŎƻƴǎƛŘŜǊŜŘ άƛƴŎƻǊǊŜŎǘέ ƛŦ ǘƘŜȅ ƛƴŘƛŎŀǘŜŘ ŀ ŎƘŀƴƎŜ ƻŎŎǳǊǊŜŘ 
(this form of error was rare, occurring on 0.7% of trials). 

 

Figure 3-1. Example trial sequence from Experiment 1, showing an urban scene where a change occurs 
between image A and image B (the blue car appears/disappears). 

The experiment contained 220 trials, which comprised 200 trials with unique image pairs (100 change-
present, 100 change-absent, as described above) and 20 trials with repeated images (10 change-
present, 10 change-absent). Unique and repeated images were analysed separately.  

Repeated images were included because the proposal for Experiment 2 required participants to 
complete two change detection sessions. Performance for the first vs. second presentation of repeated 
images was therefore compared to assess whether it is feasible for participants to complete two change 

Image B: 500ms

Blank: 500ms

Image A: 500ms

Blank: 500ms
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detection sessions using identical stimuli, or whether it would be necessary to develop two separate but 
equivalent stimulus sets for use in each session. 

The experimental task was preceded by 5 practice trials (3 change-present, 2 change-absent), which 
used novel images taken from a previous unrelated change detection study. 

3.2.4. Self-Report Measures 

Participants completed a brief demographic questionnaire and two self-report inventories, the Driver 
Behaviour Questionnaire (DBQ; Lajunen et al., 2004; Lawton et al., 1997; Mattsson, 2012; Parker et al., 
1995) and the Cognitive Failures Questionnaire (CFQ; Broadbent et al., 1982). 

The DBQ requires respondents to rate their frequency of engaging in 28 aberrant driving behaviours on 
a 6-point Likert scale from 0 (never) to 5 (nearly all the time). Previous research has typically found that 
in English-speaking populations this scale reveals four subtypes of aberrant driving behaviour (Beanland 
et al., 2014b): Ordinary Violations, or deliberately disregarding road rules and norms; Aggressive 
Violations, involving hostility towards other road users; Errors, which are dangerous non-deliberate acts, 
such as failing to search for or detect oncoming traffic before entering an intersection; and Lapses, 
ǿƘƛŎƘ ŀǊŜ ǊŜƭŀǘƛǾŜƭȅ ƳƛƴƻǊ ŦŀƛƭǳǊŜǎΣ ǎǳŎƘ ŀǎ ƳƛǎǊŜŀŘƛƴƎ ǊƻŀŘ ǎƛƎƴǎ ƻǊ ŦƻǊƎŜǘǘƛƴƎ ǿƘŜǊŜ ƻƴŜΩǎ ŎŀǊ ƛǎ 
parked. For the current study, the Errors and Lapses subscales were of particular interest. 

The CFQ requires respondents to rate their frequency of 25 lapses of attention, perception and memory 
in everyday life on a 5-point Likert scale from 0 (never) to 4 (very often). Originally it was claimed that 
the scale measured a unitary construct, with specific subfactors varying between populations 
(Broadbent et al., 1982). Subsequent studies have found that multi-factor solutions fit the data better 
than single-factor solutions (Bridger et al., 2013; Wallace, 2004); however, the specific factor structure 
varies between populations and even within populations over time (Bridger et al., 2013). Given this 
inconsistency, and the fact that overall CFQ scores have been found to significantly predict performance 
in some visual attention tasks (e.g., Forster & Lavie, 2007), for the current study overall CFQ scores were 
analysed. 

3.2.5. Procedure 

Participants were tested individually in a quiet laboratory, which was completely dark during the eye-
tracking experiment. After providing informed consent and completing the visual acuity screening, 
participants completed the self-report measures (i.e., demographic questionnaire, DBQ, CFQ). 

After completing the questionnaires participants were seated in front of the computer with their head 
position stabilised using a chinrest. The eye-tracker was individually calibrated for each participant using 
a 16-point calibration grid and then validated to ensure that average gaze error was <0.5°, which is 
within the margin of acceptable error specified by the manufacturer. Each trial commenced with a drift 
check to ensure gaze calibration accuracy was maintained and the system was manually recalibrated if 
the error exceeded 1.0° for three consecutive trials. Participants then completed the experiment, with 
breaks offered every 55 trials. 
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3.2.6. Data Analysis 

Accuracy, response time (RT) and eye movements to the change target were analysed using Generalized 
Estimating Equations (GEE; Liang & Zeger, 1986), an extension of the general linear model that permits 
analysis of repeated measurements where not all participants contribute the same number of 
observations (i.e., trials) to the dataset. Binary logistic GEE functions similarly to binary logistic 
regression, but because GEE permits repeated measurements it can be used to assess whether the 
probability of a binary outcome (e.g., change detection, fixating a change target) differs according to 
within-subjects variables (e.g., target type). Linear GEE functions similarly to repeated-measures analysis 
of variance (RM-ANOVA) and can be used to assess whether continuous variables (e.g., RT, dwell time 
on target) differ according to within-subjects variables. The crucial difference between GEE and ANOVA 
is that GEE is based on individual trials, whereas ANOVA is based on averages and requires that all 
participants have data in each condition (otherwise all of their data is excluded from the analysis). This is 
problematic for change detection paradigms as RT analyses include only correct trials, but some 
observers fail to detect all targets of a specific type (in the current study, this was common for the 
άǘǊŜŜέ ŎƘŀƴƎŜǎύΦ D99 ƛǎ ǘƘŜǊŜŦƻǊŜ ǳǎŜŦǳƭ ŀǎ ƛǘ Ŏŀƴ ŀŎŎƻƳƳƻŘŀǘŜ ƳƛǎǎƛƴƎ Řŀǘŀ ǊŀƴƎƛƴƎ ŦǊƻƳ ǎƛƴƎƭŜ ǘǊƛŀƭǎ ǘƻ 
entire conditions, and provides greater statistical power compared with RM-ANOVA (Ma et al., 2012). 

Correlations and paired t-tests were used for other measures where overall performance was of interest 
(e.g., correlations between cognitive failures and change detection performance). All analyses were 
conducted in IBM SPSS Statistics 22. An alpha level of .05 was used to assess statistical significance. 

3.3. Results 

3.3.1. tŀǊǘƛŎƛǇŀƴǘǎΩ Driving Patterns 

Participants had an average self-reported driving frequency of 4.9 hours (SD = 3.3; range 1-18 hours) or 
182 km (SD = 133; range 20-500 km) per week. As shown in Figure 3-2, participants drove most 
frequently on urban roads. Nearly 90% reported that they drove on urban 60 km/h roads frequently or 
all the time, and 58-65% reported driving on higher speed urban roads frequently or all the time. In 
contrast, over 90% reported that they drove on rural roads occasionally, hardly ever, or never. 
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Figure 3-2Φ tŀǊǘƛŎƛǇŀƴǘǎΩ ǎŜƭŦ-reported frequency of driving on different road types. 

3.3.2. Effects of Image Repetition 

Each observer completed were 40 trials involving image repetitions (20 change-present, 20 change-
absent). This represented 20 unique images, which were each presented twice. 

3.3.2.1. Change-absent trials 

Accuracy was at ceiling for change absent trials, regardless of image repetition. Specifically, accuracy on 
change-absent trials was 99.2% for the first image presentation and 100% for the second image 
presentation. Due to these values being at ceiling, it was not possible to compare them statistically. 

RTs for correct change-absent trials were compared for the first vs. second image presentation using 
linear GEE with a log link function (as RTs were positively skewed). This comparison indicated no 
significant difference in change-absent RTs between the first image presentation (M = 7122 ms, 
SE = 395) and second image presentation (M = 6886 ms, SE Ґ рмтύΣ ²ŀƭŘ ˔2(1) = 1.78, p = .183, B = -0.03, 
SE = 0.03, odds ratio (OR) = 0.97, 95% CI OR [0.92, 1.02].  

3.3.2.2. Change-present trials 

Note that there was only one repetition of each of the 10 change targets, so the image repetition 
analyses considered the main effect of repetition order (first vs. second) averaging across all types of 
change targets. 

Accuracy for change present trials was 67% for the first image presentation and 72% for the second 
image presentation. Statistical comparison using binary logistic GEE revealed a significant main effect of 
ƛƳŀƎŜ ǊŜǇŜǘƛǘƛƻƴΣ ˔2(1) = 5.65, p = .017, B = 0.23, SE = 0.10, OR = 1.26, 95% CI OR [1.04, 1.53]. That is, 
participants were significantly more likely to detect changes the second time an image was presented. 
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RTs for correct change-present trials were compared for the first vs. second image presentation using 
linear GEE with a log link function (as RTs were positively skewed). This comparison indicated no 
ǎƛƎƴƛŦƛŎŀƴǘ ŜŦŦŜŎǘ ƻŦ ǊŜǇŜǘƛǘƛƻƴ ƻǊŘŜǊΣ ˔2(1) = 13.94, p < .001, B = -0.07, SE = 0.02, OR = 0.93, 95% CI OR 
[0.89, 0.97]. Specifically, RTs were shorter for the second image presentation (M = 4789 ms, SE = 99) 
compared with the first image presentation (M = 5158 ms, SE = 114). 

Visual fixations on the change target were analysed to assess whether patterns of eye movements could 
explain RT differences between the first and second image repetition. Aspects of fixations that were 
analysed were: probability of fixating the target; probability of looked-but-failed-to-see errors; time to 
first fixation (milliseconds); and total dwell time on target (milliseconds). Probability variables were 
analysed using binary logistic GEE, and time variables were analysed using linear GEE with a log link 
function (as both were positively skewed). All analyses used image repetition order (first vs. second) as 
the only factor. 

tǊƻōŀōƛƭƛǘȅ ƻŦ ŦƛȄŀǘƛƴƎ ǘƘŜ ǘŀǊƎŜǘ όпм҈ ǾǎΦ пн҈ ŦƛȄŀǘŜŘύΣ ˔2(1) = 0.05, p = .825, B = 0.03, SE = 0.14, 
OR = 1.03, 95% CI OR [0.78, 1.37], and probability of looked-but-failed-to-see errors (9% in both 
ŎƻƴŘƛǘƛƻƴǎύΣ ˔2(1) = 0.01, p = .941, B = -0.03, SE = 0.38, OR = 0.97, 95% CI OR [0.46, 2.04], were not 
significantly different between the first and second image repetitions. 

Total dwell time on the target was also not significantly different in the first image presentation 
(M = 496 ms, SE = 23) compared with the second image presentation (M = 474, SE Ґ ооύΣ ˔2(1) = 0.48, 
p = .487, B = -0.05, SE = 0.07, OR = 0.96, 95% CI OR [0.84, 1.09]. However, time to first fixation was 
significantly earlier for the second image presentation (M = 1495, SE = 47) compared with the first 
image presentation (M = 1789, SE Ґ фмύΣ ˔2(1) = 16.80, p < .001, B = -0.18, SE = 0.04, OR = 0.84, 95% CI 
OR [0.77, 0.91]. 

Overall the results of the image repetition analyses suggest that participants were more accurate and 
faster at detecting changes in the second vs. first image repetition. The time to first fixation analyses 
suggest that priming occurred, as participants were able to shift their gaze to the change target location 
sooner of the second trial, which seems to account for the differences in RT. Based on this, the 
subsequent analyses excluded the second presentation of repeated images, so that each participant 
contributed 200 trials (100 change-present, 100 change-absent) to the main analyses. 

3.3.3. Change Detection Accuracy 

Accuracy on change-absent trials was at ceiling (99.4% in rural scenes, 99.2% in urban scenes) and so 
was not included in any statistical analyses. 

Among change-present trials, accuracy varied with change target. As shown in Figure 3-3, detection of 
tree changes was at floor (8% correct), which meant that overall comparisons of performance in urban 
vs. rural scenes was confounded by target type. As such, urban-rural comparisons were conducted using 
only targets that appeared in both environments (i.e., road signs, cars, motorcycles), with additional 
separate analyses for each environment that included safety relevance as a covariate. All analyses used 
binary logistic GEE. 



 

Final Report: Effects of sleep loss on change detection while driving (July 2016) 25 

²ƛǘƘƛƴ ǳǊōŀƴ ǎŎŜƴŜǎΣ ǘƘŜ ŜŦŦŜŎǘ ƻŦ ǎŀŦŜǘȅ ǊŜƭŜǾŀƴŎŜ ƻƴ ŀŎŎǳǊŀŎȅ ǿŀǎ ǎǘŀǘƛǎǘƛŎŀƭƭȅ ǎƛƎƴƛŦƛŎŀƴǘΣ ˔2(1) = 83.62, 
p < .001, with participants more likely to detect changes that had higher safety relevance ratings, 
B = 0.65, SE = 0.07, odds ratio (OR) = 1.92, 95% CI OR [1.67, 2.20]. The main effect of target type was 
ŀƭǎƻ ǎƛƎƴƛŦƛŎŀƴǘΣ ˔2(4) = 143.39, p < .001. Compared to changes involving signs, participants were 
significantly more likely to detect all other types of changes (see Table 3-1), with the largest effect size 
for motorcycles. 

²ƛǘƘƛƴ ǊǳǊŀƭ ǎŎŜƴŜǎΣ ǘƘŜǊŜ ǿŀǎ ŀ ǎƛƎƴƛŦƛŎŀƴǘ Ƴŀƛƴ ŜŦŦŜŎǘ ƻŦ ǘŀǊƎŜǘ ǘȅǇŜ ƻƴ ŀŎŎǳǊŀŎȅΣ ˔2(4) = 163.16, 
p < .001. As shown in Table 3-1, compared with changes involving signs participants were less likely to 
detect changes involving trees, but were more likely to detect changes involving cars, motorcycles and 
animals. Safety relevance also predicted change detection accuracy in rural scenes, but the effect size 
ǿŀǎ ǎƳŀƭƭŜǊ ǘƘŀƴ ŦƻǊ ǳǊōŀƴ ǎŎŜƴŜǎ ŀƴŘ ƻƴƭȅ Ƨǳǎǘ ƳŜǘ ǘƘŜ ŎǊƛǘŜǊƛƻƴ ƻŦ ǎǘŀǘƛǎǘƛŎŀƭ ǎƛƎƴƛŦƛŎŀƴŎŜΣ ˔2(1) = 3.97, 
p = .046, B = 0.08, SE = 0.04, OR = 1.08, 95% CI OR [1.001, 1.17]. 

Finally, accuracy in urban vs. rural scenes was compared for the three target types that appeared in 
both environments (road signs, cars, motorcycles). There was a significant main effect of environment, 

2̝(1) = 19.22, p < .001. Compared to rural scenes (92% correct), participants were less likely to detect 
changes in urban scenes (79% correct), B = -0.64, SE = 0.13, OR = 0.53, 95% CI OR [0.41, 0.68]. There was 
ŀƭǎƻ ŀ ǎƛƎƴƛŦƛŎŀƴǘ Ƴŀƛƴ ŜŦŦŜŎǘ ƻŦ ǘŀǊƎŜǘ ǘȅǇŜΣ ˔2(2) = 133.92, p < .001, consistent with the separate urban 
and rural analyses, but this did not significanǘƭȅ ƛƴǘŜǊŀŎǘ ǿƛǘƘ ŜƴǾƛǊƻƴƳŜƴǘΣ ˔2(1) = 3.77, p = .152. 
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Figure 3-3. Change detection accuracy (top panel) and response time (bottom panel) by driving 
environment and target type. Error bars represent upper and lower 95% confidence intervals for 
estimated marginal means within each condition. 
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Table 3-1 
Statistical comparison of accuracy by target type, within each driving environment 

Target Type B SE ²ŀƭŘ ˔2 p OR 95% CI OR 

Urban Scenes 

Traffic Light 0.63 0.20 10.29  .001**  1.88 [1.28, 2.77] 

Pedestrian 0.94 0.18 27.00 < .001** * 2.56 [1.80, 3.66] 

Motorcycle 2.67 0.24 122.86 < .001** * 14.49 [9.03, 23.24] 

Car 1.71 0.20 71.34 < .001** * 5.55 [3.73, 8.26] 

Road Sign -      

Rural Scenes 

Tree -2.70 0.40 45.81 < .001** * 0.07 [0.03, 0.15] 

Animal 1.24 0.32 14.69 < .001** * 3.44 [1.83, 6.47] 

Motorcycle 3.92 0.58 45.38 < .001** * 50.41 [16.11, 157.70] 

Car 1.96 0.25 63.26 < .001** * 7.11 [4.38, 11.52] 

Road Sign -      

Note. Road signs were used as the reference category for both urban and rural scene analyses. 
OR = Odds Ratio. 95% CI = 95% Confidence Interval. ** p < .01, *** p < .001. 

3.3.4. Change Detection Response Time (RT) 

RT was analysed for correct trials only, to examine how long participants required to either identify a 
change (for change-present trials) or determine that the scene was unchanged (for change-absent 
trials). Trials with RTs over 10 s for change-present trials, or 15 s for change-absent trials, were excluded 
from the analyses as these represented extreme outliers (Җ1% of responses). All analyses used GEE 
specifying a normal distribution and a log link function, as RTs were positively skewed. Four analyses 
were conducted, examining RTs in: urban vs. rural change-absent trials; urban change-present trials by 
target type; rural change-present trials by target type; and urban vs. rural change-present trials 
including only the three targets that appeared in both environments (road signs, cars, motorcycles). 

Within change-absent trials, RTs were compared between urban and rural scenes. The model showed a 
ǎƛƎƴƛŦƛŎŀƴǘ ŜŦŦŜŎǘ ƻŦ ǊƻŀŘ ŜƴǾƛǊƻƴƳŜƴǘΣ ˔2(1) = 51.57, p < .001. The average time required to inspect 
urban scenes (M = 7046 ms, SE = 332) was significantly longer than to inspect rural scenes (M = 6623, 
SE = 318), B = 0.01, SE = 0.01, OR = 1.06, 95% CI OR [1.05, 1.08]. 

Within urban change-present trials, RTs were analysed with safety relevance as a covariate and target 
ǘȅǇŜ ŀǎ ŀ ǇǊŜŘƛŎǘƻǊΦ ¢ƘŜǊŜ ǿŀǎ ŀ ǎƛƎƴƛŦƛŎŀƴǘ ŜŦŦŜŎǘ ƻŦ ǎŀŦŜǘȅ ǊŜƭŜǾŀƴŎŜΣ ˔2(1) = 135.09, p < .001, B = -0.04, 
SE = 0.00, OR = 0.96, 95% CI OR [0.96, 0.97], with participants responding faster to changes rated as 
ƘŀǾƛƴƎ ƎǊŜŀǘŜǊ ǎŀŦŜǘȅ ǊŜƭŜǾŀƴŎŜΦ ¢ƘŜǊŜ ǿŀǎ ŀ ŀƭǎƻ ǎƛƎƴƛŦƛŎŀƴǘ ŜŦŦŜŎǘ ƻŦ ǘŀǊƎŜǘ ǘȅǇŜΣ ˔2(4) = 164.01, 
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p < .001 (see Table 3-2). There was a discrepancy between motorised road users and other target types. 
Specifically, compared to changes involving signs, participants were significantly faster at detecting 
changes involving cars or motorcycles, but were not significantly faster at changes involving pedestrians 
or traffic lights, as shown in Figure 3-3. 

Within rural change-present trials, RTs were also analysed with safety relevance as a covariate and 
ǘŀǊƎŜǘ ǘȅǇŜ ŀǎ ŀ ǇǊŜŘƛŎǘƻǊΦ ¢ƘŜ ŜŦŦŜŎǘ ƻŦ ǎŀŦŜǘȅ ǊŜƭŜǾŀƴŎŜ ǿŀǎ ƴƻǘ ǎǘŀǘƛǎǘƛŎŀƭƭȅ ǎƛƎƴƛŦƛŎŀƴǘΣ ˔2(1) = 2.68, 
p = ΦмлнΣ ōǳǘ ǘƘŜǊŜ ǿŀǎ ŀ ǎƛƎƴƛŦƛŎŀƴǘ ŜŦŦŜŎǘ ƻŦ ǘŀǊƎŜǘ ǘȅǇŜΣ ˔2(4) = 82.01, p < .001 (see Table 3-2). As 
shown in Figure 3-3, the RT results mirrored the pattern obtained for accuracy. Compared to changes 
involving signs, participants were significantly slower at detecting changes involving trees and 
significantly faster at detecting changes involving cars, motorcycles or animals. 

Finally, RTs were compared between urban vs. rural scenes for the three target types that appeared in 
both environments (road signs, cars, motorcycles). There was a significant main effect of environment, 

2̝(1) = 37.38, p < .001, with RTs being significantly longer for urban scenes (M = 5105 ms, SE = 77) than 
for rural scenes (M = 4803, SE = 86), B = 0.04, SE = 0.02, OR = 1.05, 95% CI OR [1.004, 1.09]. There was 
ŀƭǎƻ ŀ ǎƛƎƴƛŦƛŎŀƴǘ Ƴŀƛƴ ŜŦŦŜŎǘ ƻŦ ǘŀǊƎŜǘ ǘȅǇŜΣ ˔2(2) = 53.20, p < .001, but this did not significantly interact 
ǿƛǘƘ ŜƴǾƛǊƻƴƳŜƴǘΣ ˔2(1) = 0.90, p = .636, consistent with the accuracy results. 

Table 3-2 
Statistical comparison of change detection RT by target type, within each driving environment 

Target Type B SE ²ŀƭŘ ˔2 p OR 95% CI OR 

Urban Scenes 

Traffic Light -0.03 0.02 1.28 .258 0.98 [0.93, 1.02] 

Pedestrian 0.00 0.03 0.02 .886 1.00 [0.94, 1.05] 

Motorcycle -0.12 0.03 20.43 < .001** * 0.89 [0.84, 0.93] 

Car -0.09 0.03 9.87 < .001** * 0.92 [0.87, 0.97] 

Road Sign -      

Rural Scenes 

Tree 0.21 0.07 10.43 < .001** * 1.24 [1.09, 1.41] 

Animal -0.10 0.02 17.50 < .001** * 0.91 [0.87, 0.95] 

Motorcycle -0.18 0.03 41.61 < .001** * 0.84 [0.79, 0.88] 

Car -0.15 0.03 31.30 < .001** * 0.87 [0.82, 0.91] 

Road Sign -      

Note. Road signs were used as the reference category for both urban and rural scene analyses. OR = 
Odds Ratio. 95% CI = 95% Confidence Interval. *** p < .001. 
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3.3.5. Self-Report Measures 

CFQ total scores were computed by summing responses to all items, yielding possible scores of 0 to 100. 
In thŜ ŎǳǊǊŜƴǘ ǎŀƳǇƭŜ /ǊƻƴōŀŎƘΩǎ ŀƭǇƘŀ όʰύ ǿŀǎ Φуо ŀƴŘ ǘƘŜ ǊŀƴƎŜ ƻŦ ƻōǎŜǊǾŜŘ ǎŎƻǊŜǎ ǿŀǎ нм-57 
(M = 39.8, SD = 10.2). CFQ scores showed a non-significant small negative correlation with overall 
change detection accuracy (r = -.21, p = .307) and a moderate positive correlation with RT (r = .39, 
p = .051). Although these trends did not reach statistical significance, they suggest that higher CFQ 
scores have a small association with poorer change detection performance (i.e., lower accuracy and 
longer time required to identify changes). 

Scores for the DBQ Lapses and Error subscales were computed by summing responses to the items on 
each scale. This comprised 8 items for the Errors scale (possible scores 0-40) and 7 items for the Lapses 
scale (possible scores 0-35); one item pertaining to manual transmission cars was excluded because 
several participants indicated that they exclusively drove automatic transmission cars. For the Errors 
subscale observed scores were 0-10 (M = 4.7, SD Ґ нΦрΣ ʰ Ґ ΦптύΦ CƻǊ ǘƘŜ [ŀǇǎŜǎ ǎǳōǎŎŀle observed scores 
were 2-14 (M = 6.9, SD Ґ оΦмΣ ʰ Ґ ΦроύΦ bŜƛǘƘŜǊ 5.v ǎǳōǎŎŀƭŜ ǿŀǎ ǎƛƎƴƛŦƛŎŀƴǘƭȅ ŎƻǊǊŜƭŀǘŜŘ ǿƛǘƘ ŜƛǘƘŜǊ 
change detection accuracy (Errors: r = -.07, p = .749; Lapses: r = -.18, p = .372) or RT (Errors: r = .25, 
p = .216; Lapses: r = .16, p = .424). 

3.3.6. Eye Movements: Fixations on Change Targets  

Three variables pertaining to fixations on change targets were selected for analysis: probability of 
fixating the target; probability of looked-but-failed-to-see errors (i.e., failing to detect the change, 
despite fixating the target); and dwell time on target. 

3.3.6.1. Probability of Fixating Target 

Probability of target fixation was analysed for all trials, regardless of whether the target was detected, as 
this represents implicit capture of attention. Binary logistic GEE was used to assess whether probability 
of fixation differed according to target type and safety relevance, within both urban and rural scenes, 
with separate analyses for each driving environment. 

Within urban scenes, tƘŜǊŜ ǿŀǎ ŀ ǎƛƎƴƛŦƛŎŀƴǘ ŜŦŦŜŎǘ ƻŦ ǎŀŦŜǘȅ ǊŜƭŜǾŀƴŎŜΣ ˔2(1) = 9.74, p = .002, B = 0.13, 
SE = 0.04, OR = 1.14, 95% CI OR [1.05, 1.23], whereby participants were more likely to fixate on targets 
with higher safety relevance. There was a also significant effect ƻŦ ǘŀǊƎŜǘ ǘȅǇŜΣ ˔2(4) = 64.23, p < .001. 
Compared to road signs (43% fixated), observers were significantly more likely to fixate both cars (68% 
fixated; ̝ 2 = 19.84, p < .001, B = 1.02, SE = 0.23, OR = 2.76, 95% CI OR [1.77, 4.31]) and motorcycles (65% 
fixated; ̝ 2 = 18.12, p < .001, B = 0.90, SE = 0.21, OR = 2.46, 95% CI OR [1.63, 3.73]), but not pedestrians 
(40% fixated; ̝ 2 = 0.26, p = .611) or traffic lights (42% fixated; ̝ 2 = 0.04, p = .850). 

Within rural scenes, there was a significant effect of safety ǊŜƭŜǾŀƴŎŜΣ ˔2(1) = 39.85, p < .001, B = 0.31, 
SE = 0.05, OR = 1.37, 95% CI OR [1.24, 1.51]. Similar to urban scenes, in rural scenes participants were 
more likely to fixate on targets with higher safety relevance, but the effect was even larger for rural 
scenes. ¢ƘŜǊŜ ǿŀǎ ŀ ŀƭǎƻ ǎƛƎƴƛŦƛŎŀƴǘ ŜŦŦŜŎǘ ƻŦ ǘŀǊƎŜǘ ǘȅǇŜΣ ˔2(4) = 56.48, p < .001. Compared to road signs 
(49% fixated), observers were significantly more likely to fixate both cars (64% fixated; ̝ 2 = 10.18, 
p = .001, B = 0.65, SE = 0.20, OR = 1.92, 95% CI OR [1.29, 287]) and were less likely to fixate trees (32% 
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fixated; ̝ 2 = 7.49, p = .006, B = -0.70, SE = 0.25, OR = 0.50, 95% CI OR [0.30, 0.82]). Probability of fixating 
motorcycles (51% fixated; ̝ 2 = 0.25, p = .618) and animals (39% fixated; ̝ 2 = 2.94, p = .086) was not 
significantly different to signs. 

Finally, an additional analysis comparing probability of fixating the target between urban and rural 
scenes (for sign, car and motorcycle targets only) revealed no significant effect of driving environment 
on probability of target fixation, ̝ 2(1) = 1.42, p = .233. The effect of target type was also significant, 
consistent with the analyses conducted separately for urban and rural scenes. 

3.3.6.2. Probability of Looked-But-Failed-To-See Errors 

This analysis focused on the probability of failing to detect a change despite having fixated on the target. 
As with other analyses, comparisons examining the effects of target type and safety relevance were 
made separately for urban and rural scenes, followed by a direct urban vs. rural comparison. 

Within urban scenes, participants experienced looked-but-failed-to-see errors on 8% of all trials in which 
they fixated the target. There were significant effects of both safety relevance, 2̝(1) = 12.11, p = .001, 
B = -0.48, SE = 0.14, OR = 0.62, 95% CI OR [0.47, 0.81], and target type, ̝ 2(4) = 52.52, p < .001. Observers 
were less likely to make looked-but-failed-to-see errors for targets with higher safety relevance ratings, 
regardless of target type. As shown in Table 3-3, looked-but-failed-to-see errors were most common 
when the target was a road sign, and were significantly less likely in all other conditions. 

Table 3-3 
Probability of looked-but-failed-to-see errors in urban scenes, by target type 

Target Type M  B SE ²ŀƭŘ ˔2 p OR 95% CI OR 

Traffic Light 8% -0.97 0.44 4.97 .026* 0.38 [0.16, 0.89] 

Pedestrian 1% -2.98 1.02 8.60 .003* 0.05 [0.01, 0.37] 

Motorcycle <1% -3.91 0.93 17.68 < .001***  0.02 [0.003, 0.12] 

Car 5% -1.43 0.36 15.47 < .001***  0.24 [0.12, 0.49] 

Road Sign 18% -      

Note. Road signs were used as the reference category. OR = Odds Ratio. 95% CI = 95% Confidence 
Interval. *p < .05, ** p < .01, *** p < .001. 

Within rural scenes, 10% of trials involved looked-but-failed-to-see errors; however, this was inflated by 
the fact that participants experienced looked-but-failed-to-see errors on 71% of trials in the tree 
condition, compared to 0% for motorcycles, 2% for animals, 5% for vehicles and 17% for signs. 
Inspection of the data revealed that target type was confounded with both safety relevance ratings and 
probability of looked-but-failed-to-see errors, which precluded the possibility of reliable statistical 
analysis. Binary logistic GEE with safety relevance as the only covariate (i.e., target type was omitted 
from the model) revealed no significant effects, 2̝(1) = 2.27, p = .132, suggesting that in rural scenes 
target type was a better predictor of looked-but-failed-to-see errors than safety relevance of that target. 
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Finally, an additional analysis comparing probability of looked-but-failed-to-see errors between urban 
and rural scenes (for sign, car and motorcycle targets only) revealed a significant main effect of driving 
environment, ̝ 2(1) = 7.49, p = .006, whereby looked-but-failed-to-see errors were slightly but 
significantly more common in urban (5%) vs. rural (3%) scenes, B = 0.62, SE = 0.23, OR = 1.86, 95% CI 
OR [1.19, 2.89]. The effect of target type was also significant, consistent with the analyses conducted 
separately for urban and rural scenes. 

3.3.6.3. Dwell Time on Target 

Dwell time indicates the relative difficulty of identifying targets that are fixated; longer dwell times 
indicate the participant requires more time to cognitively process the target. The analyses included only 
correct trials in which the participant fixated the target. As with other measures, separate analyses were 
conducted for urban and rural scenes, followed by a direct urban vs. rural comparison. 

Within urban scenes, there were significant effects of both safety relevance, 2̝(1) = 9.47, p = .002, 
B = -0.06, SE = 0.18, OR = 0.95, 95% CI OR [0.91, 0.98], and target type, ̝ 2(4) = 54.76, p < .001. Dwell 
times were shorter on targets with higher safety relevance. As shown in Table 3-4, the results for dwell 
time mirrored the patterns for change detection accuracy: compared with road signs dwell times were 
significantly shorter for all other target types, with the effect being largest for motorcycles. 

Within rural scenes, there was a significant effect of safety relevance, 2̝(1) = 22.14, p < .001, B = 0.09, 
SE = 0.02, OR = 1.09, 95% CI OR [1.05, 1.13], but the effect was in the opposite direction to that found in 
rural scenes: targets with higher safety relevance were associated with longer dwell times. This is likely a 
statistical artefact, due to the confound between target type and safety relevance, as the zero-order 
correlation between safety relevance and dwell time trended in the opposite direction. There was also a 
significant effect of target type, ̝ 2(4) = 180.33, p < .001, with considerable variations in dwell time 
between targets, as shown in Table 3-4. Compared to road signs, observers spent significantly less time 
looking at animals, motorcycles and cars, but more time looking at trees. 

Finally, dwell times were compared between urban and rural scenes, for trials where the target was a 
road sign, car or motorcycle. This analyses revealed significant effects of target type, consistent with the 
separate urban and rural analyses, but no effect of driving environment, ̝2(1) = 0.07, p = .797. 
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Table 3-4 
Average dwell time (in milliseconds) on the change target, by target type and driving environment 

Target Type M  B SE ²ŀƭŘ ˔2 p OR 95% CI OR 

Urban Scenes 

Traffic Light 655 -0.20 0.08 5.71 .017* 0.82 [0.70, 0.97] 

Pedestrian 510 -0.45 0.08 33.44 < .001***  0.64 [0.55, 0.74] 

Motorcycle 418 -0.65 0.09 47.37 < .001***  0.52 [0.45, 0.63] 

Car 577 -0.32 0.07 23.04 < .001***  0.73 [0.64, 0.83] 

Road Sign 786 -      

Rural Scenes 

Tree 1606 0.54 0.22 5.89 .015* 1.72 [1.11, 2.67] 

Animal 328 -1.05 0.10 108.71 < .001***  0.35 [0.29, 0.43] 

Motorcycle 428 -0.78 0.07 113.51 < .001***  0.46 [0.40, 0.53] 

Car 667 -0.34 0.08 16.95 < .001***  0.72 [0.61, 0.84] 

Road Sign 933       

Note. Road signs were used as the reference category. OR = Odds Ratio. 95% CI = 95% Confidence 
Interval. *p < .05, *** p < .001. 

3.3.7. Eye Movements: Non-Target Fixation Patterns  

To examine scanning patterns more generally, several aspects of eye movements were compared 
between urban and rural change-absent trials. These measures included the average number and 
duration of fixations made each trial, as well as the probability of fixating specific regions of interest 
within the scene and dwell times on those regions. Five interest area (IA) regions were defined on each 
image: the road itself; off-road left; off-road right; horizon (where road meets sky); and sky. 

As shown in Table 3-5, observers made more significantly more fixations per trial, but significantly 
shorter fixations, when viewing urban scenes compared to rural scenes. There were also differences in 
where observers fixated: the probability of fixating all five IAs was significantly higher in urban vs. rural 
scenes. Dwell times (measured as a proportion of the total dwell time for the trial) were significantly 
longer on the road IA for rural vs. urban scenes, but were significantly longer on the off-road-right and 
sky IAs for urban vs. rural scenes. This indicates that when viewing rural scenes, participants mostly 
focused their attention on the road itself, whereas in urban scenes they devoted more time to searching 
other areas of the scene. 
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Table 3-5 
Patterns of eye movements in change-absent trials, comparing between driving environments 

Measure 
Urban Rural Difference 

Comparison 
M (SD) M (SD) M 95% CI 

Average fixations per trial 15.4 
(5.5) 

13.6 
(4.8) 

1.8 [1.3, 2.2] t(25) = 7.62,  
p < .001*** , d = 1.49 

Average fixation duration 315 
(52) 

332 
(52) 

17 [12, 23] t(25) = 6.26,  
p < .001*** , d = 1.23 

Probability of fixation:      

IA: Road 94% 
(10%) 

92% 
(11%) 

2% [0%, 3%] t(25) = 2.34,  
p = .028*, d = 0.46 

IA: Off-road left 92% 
(11%) 

82% 
(14%) 

10% [7%, 13%] t(25) = 7.08,  
p < .001*** , d = 1.39 

IA: Off-road right 89% 
(6%) 

75% 
(8%) 

14% [11%, 17%] t(25) = 10.56,  
p < .001*** , d = 2.07 

IA: Horizon  92% 
(6%) 

86% 
(12%) 

6% [3%, 10%] t(25) = 3.66,  
p = .001** , d = 0.72 

IA: Sky 84% 
(8%) 

52% 
(15%) 

33% [29%, 37%] t(25) = 17.06,  
p < .001*** , d = 3.35 

Dwell time (% of trial)       

IA: Road 29% 
(9%) 

34% 
(13%) 

5% [2%, 07%] t(25) = 3.64,  
p = .001** , d = 0.71 

IA: Off-road left 29% 
(6%) 

28% 
(6%) 

1% [0%, 03%] t(25) = 1.61,  
p = .120, d = 0.32 

IA: Off-road right 26% 
(4%) 

23% 
(4%) 

3% [1%, 05%] t(25) = 3.43,  
p = .002** , d = 0.67 

IA: Horizon  32% 
(6%) 

31% 
(7%) 

1% [-1%, 04%] t(25) = 1.03,  
p = .312, d = 0.20 

IA: Sky 16% 
(5%) 

10% 
(4%) 

6% [5%, 08%] t(25) = 10.96,  
p < .001*** , d = 2.15 

Note. 95% CI = 95% Confidence Interval. *p < .05, ** p < .01, *** p < .001. 
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3.4. Discussion 

¢ƘŜ ŀƛƳ ƻŦ ǘƘŜ ŎǳǊǊŜƴǘ ǎǘǳŘȅ ǿŀǎ ǘƻ ŜȄŀƳƛƴŜ ŘǊƛǾŜǊǎΩ ŎƘŀƴƎŜ ŘŜǘŜction ability in urban and rural driving 
scenes, for a range of objects that vary in their contextual safety relevance. All participants were 
experienced, fully-licenced drivers who drove at least weekly and were familiar with the locations 
depicted in the stimulus images, although they reported driving considerably more frequently in urban 
areas compared to rural roads. The results revealed several aspects of change detection performance, 
including accuracy, RT and eye movements, vary as a function of driving environment, target type, and 
the safety relevance of the change. 

3.4.1. Effects of Driving Environment: Urban vs. Rural 

When directly comparing performance in urban and rural scenes, with target type and context matched 
between environments, participants were significantly more accurate and faster at detecting changes in 
rural scenes compared with urban scenes. Participants ǿŜǊŜ ŀƭǎƻ ƳƻǊŜ ƭƛƪŜƭȅ ǘƻ ŜȄƘƛōƛǘ άƭƻƻƪŜŘ-but-
failed-to-ǎŜŜέ ŜǊǊƻǊǎΣ ǿƘŜǊŜōȅ ǘƘŜȅ ŦƛȄŀǘŜŘ ǘƘŜ ǘŀǊƎŜǘ ōǳǘ ŦŀƛƭŜŘ to consciously detect and report the 
change, although the effect size was relatively small (3% vs. 5%). These differences are most likely 
attributable to the fact that urban scenes involve greater visual clutter and complexity. To our 
knowledge, no previous research has compared change detection in urban and rural scenes in the same 
way as the current study. However, these findings are consistent with research on visual crowding 
(Whitney & Levi, 2011). Also, it is worth noting that participants were significantly more familiar with 
urban driving, and drove regularly in the areas depicted in the urban scenes, whereas they reported 
significantly less exposure to rural driving. In this regard, the results are consistent with previous findings 
regarding the effects of familiarity on change blindness (e.g., Charlton & Starkey, 2013; Harms & 
Brookhuis, 2016; Martens & Fox, 2007), which indicate that drivers exhibit greater change blindness in 
familiar situations. 

Despite the slight increase in looked-but-failed-to-see errors in urban scenes, there was no difference in 
the probability of fixating targets, or total dwell time on targets, when comparing urban and rural 
scenes. Analyses of eye movements in change-absent trials suggest this could be because participants 
adopted different scanning patterns when viewing urban scenes, to maximise their likelihood of 
detecting target objects in cluttered urban environments. Specifically, when viewing urban scenes 
participants made more fixations of shorter average duration, and distributed their fixations more 
broadly throughout the scene, whereas when viewing rural scenes participants made fewer longer 
fixations and focused predominantly on the road itself. This is consistent with research on eye 
movements in driving, which has found that experienced drivers adapt their scanning patterns based on 
situational demands (Chapman & Underwood, 1998; Falkmer & Gregersen, 2005; Underwood, 2007; 
Underwood et al., 2002). 

3.4.2. Effects of Change Safety Relevance 

In addition to the differences that emerged from the direct comparison of urban and rural scenes, the 
analyses regarding safety relevance of changes revealed different patterns for the two driving 
environments. Specifically, the effects of the safety relevance of the change were larger and more 
consistent for the urban scenes. Changes with higher safety relevance were associated with higher 
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accuracy, shorter RT, increased probability of fixating the target, reduced probability of looked-but-
failed-to-see errors, and shorter dwell times. Taken together, these findings suggest that changes with 
ƎǊŜŀǘŜǊ ǎŀŦŜǘȅ ǊŜƭŜǾŀƴŎŜ ŀǊŜ ƳƻǊŜ ŜŦŦŜŎǘƛǾŜ ŀǘ ŎŀǇǘǳǊƛƴƎ ŘǊƛǾŜǊǎΩ ƛƳǇƭƛŎƛǘ ŀǘǘŜƴǘƛƻƴ όƛΦŜΦΣ ǇǊƻōŀōƛƭƛǘȅ ƻŦ 
fixation) and then, due to their relevance, are processed into conscious awareness. These findings are 
consistent with previous change detection research, which has consistently revealed that observers are 
more efficient at changes that are more central to interpreting the scene (Rensink et al., 1997) and 
those that have greater personal or task relevance (Galpin et al., 2009; Lee et al., 2007; Marchetti et al., 
2006; Mueller & Trick, 2013; Shinoda et al., 2001; Velichkovsky et al., 2002; Zhao et al., 2014). 

In contrast to the results observed in urban scenes, the effects of safety relevance on detection of 
changes in rural scenes was considerably less consistent. Safety relevance of the change had only a 
marginally significant effect on change detection accuracy in rural scenes and did not predict RT or 
looked-but-failed-to-see errors. The only measure that was clearly affected in the expected direction 
was probability of fixating the target, in that drivers were more likely to fixate targets with higher safety 
relevance. One possibility is that these inconsistent effects are linked to the task demands and resulting 
performance differences between urban and rural scenes. That is, urban scenes were more cognitively 
demanding to process and so observers preferentially focused on aspects of the scene that appeared to 
have greater relevance. Rural scenes were easier to process, which meant that participants had the 
capacity to process change targets that had lower safety relevance. 

3.4.3. Effects of Target Type 

Beyond the effects of change safety relevance, there were also significant effects of target type on 
change detection performance, especially for trees and signs. 

Change detection performance was at floor for changes involving trees, with most participants failing to 
detect all of the tree-related changes. Participants were also less likely to fixate on trees compared to 
other target types and were substantially more likely to exhibit looked-but-failed-to-see errors on the 
occasions when they did fixate trees. These patterns cannot be wholly explained by safety relevance, as 
target position was systematically manipulated so that half of the trees appeared directly next to the 
road (where they posed a potential hazard in the event of an emergency). However, the fact that drivers 
overlooked changes to roadside foliage is consistent with previous research on risk perception, which 
found that participants consistently overlook subtle roadside features that increase the hazardousness 
of driving on a particular road (Charlton et al., 2014). 

When changes involved signs, participants were significantly less efficient at change detection compared 
to all other types (excluding trees). In both urban and rural scenes, participants were less accurate and 
exhibited longer dwell times for sign changes, compared to other types of changes. These results are 
consistent with previous research, which found that participants commonly exhibit change blindness 
when changes involve road signs (Charlton & Starkey, 2013; Harms & Brookhuis, 2016; Martens & Fox, 
2007). One commonality across the non-sign, non-tree target types is that they are all objects that could 
plausibly change: cars, motorcycles, pedestrians and animals are all mobile, whereas traffic lights have a 
fixed position but update dynamically. As such, one possibility may be that participants were 
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preferentially attending to aspects of the scene that are most likely to change in a real driving 
environment. This is consistent with the fact that changes to trees were almost never detected. 

Another explanation is that participants preferentially attend to elements within the scene that are 
potentially dangerous. This is supported by RT, probability of fixation, and looked-but-failed-to-see error 
analyses. Specifically, changes involving pedestrians and traffic lights were not significantly different 
from sign changes in terms of RT, probability of target fixation, and looked-but-failed-to-see errors. In 
contrast, when changes involved cars, motorcycles, or animals, participants exhibited shorter RTs, 
increased probability of fixating the target, and reduced probability of looked-but-failed-to-see errors. 
The key difference between cars, motorcycles and animals on the one hand, and pedestrians and traffic 
lights on the other hand, is that the former category are more likely to cause damage in the event of a 
collision. (Keeping in mind that several of the animal targets were kangaroos, which pose a particular 
threat to drivers in the Canberra region.) 

3.4.4. Summary 

Overall the results of Experiment 1 indicate that change detection efficiency is affected by several 
variables, including the driving environment in which the change occurs, the safety relevance on the 
change, and the type of object changed. Specifically, drivers are more efficient at detecting changes to 
other road users or potential hazards, such as animals near the roadside, as well as changes with higher 
safety relevance. Drivers are also better at detecting changes in rural scenes compared to urban scenes, 
which is likely because there is less visual clutter in rural areas, but could also reflect the fact that urban 
areas are more familiar (which has been demonstrated to exacerbate change blindness). 

Most notably, all of the change targets in the current study were potentially driving relevant, in that 
ǘƘŜȅ ǿŜǊŜ ǊƻŀŘ ǳǎŜǊǎ ƻǊ ǊƻŀŘǎƛŘŜ ƻōƧŜŎǘǎΦ ¢ƘŜ ǊŜǎǳƭǘǎ ǘƘŜǊŜŦƻǊŜ ŘŜƳƻƴǎǘǊŀǘŜ ǘƘŀǘ ƴƻǘ ŀƭƭ άŘǊƛǾƛƴƎ 
ǊŜƭŜǾŀƴǘέ ŎƘŀƴƎŜǎ ŀǊŜ ŜǉǳŀƭΣ ǿƘƛŎƘ Ƙŀǎ ƛƳǇƭƛŎŀǘƛƻƴǎ ŦƻǊ ǇǊŜǾƛƻǳǎ ǊŜǎŜŀǊŎƘ ǘƘŀǘ ǳǎŜŘ ōǊƻŀŘ ŎŀǘŜƎƻǊƛŜǎ ǘƻ 
define relevant vs. irrelevant images. 

A final point worth noting is the fact that the self-report measures of cognitive failures and driving-
related errors and lapses were not significantly associated with change detection ability. This is 
ǎǳƎƎŜǎǘƛǾŜ ƻŦ άchange blindness blindnessέΣ ǿƘƛŎƘ ǊŜŦŜǊǎ ǘƻ ǘƘŜ Ŧact that observers do not have a good 
understanding of their own change detection ability and commonly under-estimate their susceptibility 
to change blindness (Beck et al., 2007). In the context of driving, this could be problematic if drivers are 
not aware of precisely how difficult it is to detect changes, especially for changes involving road signs. 
Two main avenues are available for addressing this issue. First, driver education programs could aim to 
raise awareness of change blindness, specifically highlighting the types of changes that drivers are most 
likely to have trouble detecting. (Note that some driver education programs do mention change 
blindness and/or inattentional blindness, but often use generic examples rather than focusing on 
specifics of when these phenomena are likely to occur on the road.) Second, road sign design and 
placement should be rigorously evaluated and changed where appropriate, so that redundant signs can 
be eliminated and safety-critical signs can be redesigned to better capǘǳǊŜ ŘǊƛǾŜǊǎΩ ŀǘǘŜƴǘƛƻƴ. 
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4. Experiment 2 

4.1. Background and Rationale 

Driver sleepiness is a causal factor in approximately 15-30% of all crashes (Åkerstedt, 2000; Connor, 
2009; Horne & Reyner, 1995). Crash outcome is often severe, with drivers who are sleepy being at an 
almost six fold increase in the odds of having an injury-involved crash (Herman et al., 2014). Sleep-
related crashes are most commonly characterised by the vehicle drifting out of the driving lane and 
colliding with an object in plain sight, and there are often no signs of braking or attempted avoidance 
manoeuvres by the sleepy driver (Horne & Reyner, 1995). These types of crashes most often occur on 
high speed roads in rural environments. Extreme sleepiness (having fallen asleep or had to stop driving), 
which may result in out-of-lane events while driving, is experienced by approximately 8-9% of drivers 
every month (Philip et al., 2010; Sagberg, 1999). However, the majority of drivers experience some 
degree of sleepiness on some occasions (Armstrong et al., 2013). To date there has been little attempt 
to understand the driving impairment experienced due to slight sleepiness prior to the point of 
experiencing a micro sleep and/or having an out-of-lane incident. 

Although ŘǊƛǾŜǊ ǎƭŜŜǇƛƴŜǎǎ ƳŀƪŜǎ ǳǇ ŀ ƎǊŜŀǘŜǊ ǇǊƻǇƻǊǘƛƻƴ ƻŦ ǘƻǘŀƭ ŎǊŀǎƘŜǎ ƛƴ ƘƛƎƘ ǎǇŜŜŘ όҗмлл km/h) 
zones, a recent analysis of Queensland crash data reported that over 40% of sleep-related crashes occur 
in low speed zones όҖсл km/h; Filtness et al., under review). Similarly, in a self-report survey of ACT and 
NSW drivers who had had a sleep-related driving incident, 25% reported that this incident occurred in a 
residential area with speed limit of 50 km/h or less and a further 30% reported an incident occurring on 
roads with speed limits between 50 and 80 km/h (Armstrong et al., 2013). To date, the majority of driver 
sleepiness research has focused on understanding driver sleepiness during rural or motorway driving 
(e.g., Filtness et al., 2012; Hallvig et al., 2013; Philip et al., 2005), with little attempt to specifically 
investigate low speed sleep-related crashes. 

Sleepiness can cause a range of deficiencies which have potential to subtly impair driving performance. 
For example, sleepiness slows reaction time, impairs decision making ability, and reduces vigilance 
(Jackson et al., 2013), all of which are essential skills for safe driving. Furthermore, sleepiness impairs 
complex cognitive processes, such as information processing and planning skills (Horne, 2012), as well as 
reducing the ability to complete dual task paradigms (Haavisto et al., 2010). Division of attention and 
forward planning are both skills vital for the detection of and response to hazards while driving. Another 
skill necessary for accurate hazard detection and response is visual scanning. Recently it has been noted 
that sleep deprivation leads to decreased oculomotor function (De Gennaro et al., 2000; Fransson et al., 
2008), which impairs visual search performance (De Gennaro et al., 2001). These subtle impairments 
may interact with each other to impact driving performance prior to the moment of falling asleep and 
exiting the road. Further, it may be argued that these skills (i.e., rapid decision making and reactions) are 
relatively more important in urban driving compared with rural driving.  

Although sleep loss impairs several skills that are vital to safe driving in urban environments, and drivers 
commonly report driving while sleepy in urban areas (e.g., Armstrong et al., 2013), no previous research 
has shown a direct relationship between sleepiness and driving safety in urban areas. The current work 
considers the impact of sleep loss on the ability to detect changes in driving scenes. Sleep was restricted 
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to a level expected to invoke sleepiness but not so extreme as to expect participants would fall asleep 
during the study. The study was designed to assess whether sleep loss impacts change detection for 
driving scenes, and whether the impact of sleepiness on change detection varies as a function of the 
driving environment or the type of change that occurred, as both of these factors were found to 
substantially influence change detection efficiency in Experiment 1. 

4.2. Method 

4.2.1. Participants 

Twenty-two fully-licenced drivers (15 female, 8 male) aged 20-29 years (M = 22.4, SD = 2.4) provided 
informed consent and participated voluntarily. Participants were offered AUD$50 compensation for 
their time, plus an additional allowance to cover travel expenses to attend the sleep restriction session. 
All participants had normal or corrected-to-normal visual acuity, as measured using a near vision chart, 
and drove at least once a week within the Canberra region. 

Participants were pre-screened to ensure they met relevant inclusion criteria for participating in a sleep 
restriction study. Specifically, participants were required to be regular 7-8 hour/night sleepers who did 
not take regular naps, suffer from extreme daytime sleepiness, or have any sleep disorders. Participants 
were excluded if they smoked, drank alcohol daily, and/or they consumed five or more high-caffeine 
drinks per day. 

Ethical aspects of the research were approved by the Australian National University Human Research 
Ethics Committee (protocol 2014/458). 

4.2.2. Apparatus 

±ƛǎǳŀƭ ǎǘƛƳǳƭƛ ǿŜǊŜ ǇǊŜǎŜƴǘŜŘ ƻƴ ŀ нтέ !ǇǇƭŜ ƛaŀŎ ŘŜǎƪǘƻǇ ŎƻƳǇǳǘŜǊΦ !ƴ 9ȅŜƭƛƴƪ мллл ŜȅŜ-tracker, with 
a reported spatial accuracy within 0.25-0.5°, was used to monitor eye movements at a temporal 
frequency of 1000 Hz. Head position was fixed using a chinrest with a viewing distance of 95 cm, yielding 
a display area of 30.3° × 19.4° visual angle. Stimulus presentation and data acquisition were controlled 
via SR Research Experiment Builder. 

BodyMedƛŀ {ŜƴǎŜ²ŜŀǊ !ǊƳōŀƴŘǎ ǿŜǊŜ ǳǎŜŘ ǘƻ ƳƻƴƛǘƻǊ ǇŀǊǘƛŎƛǇŀƴǘǎΩ ǎƭŜŜǇ ŀƴŘ ǿŀƪƛƴƎ ŀŎǘƛǾƛǘȅ ŘǳǊƛƴƎ 
the three days preceding each testing session. SenseWear Armbands are wearable physiological 
monitoring devices that record several parameters; of particular relevance to the current study it 
records time spent lying down as well as sleep duration and efficiency. 

4.2.3. Stimuli 

There were two matched sets of experimental stimuli (stimulus sets A & B), one for each change 
detection session. The images used within sets A & B were different (but matched for difficulty of 
change detection) to control for image repetition priming effects demonstrated in Experiment 1.  

Each stimulus set included 80 image pairs depicting driving scenes: 20 urban change-present pairs, 20 
rural change-present pairs, 20 urban change-absent pairs and 20 rural change-absent pairs. In change-
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absent pairs the two images displayed were identical, whereas in change-present pairs one of the 
images was edited to add, remove or alter a single driving-relevant target. 

Each image subtended 23.0° × 17.5° visual angle and was taken using a digital camera mounted on the 
dashboard of a station wagon. Urban images were taken in central Canberra (civic, inner north, 
Parliamentary Triangle) and rural images were taken on rural roads in surrounding regions.  

Within both the urban and rural environments, five types of change targets were used. In the urban 
scenes the change targets were either cars, motorcycles, road signs, traffic lights or pedestrians, with 
four image pairs for each category. In the rural scenes the change targets were either cars, motorcycles, 
road signs, trees or animals, again with four image pairs for each category. 

To develop the matched stimulus sets, we analysed the Study 1 data for each of the 100 change-present 
trials, comparing RT and accuracy (averaged across all participants) for each trial within the 10 different 
stimulus categories (i.e., urban/car, urban/motorcycle, urban/sign, urban/pedestrian, urban/traffic light, 
rural/car, rural/motorcycle, rural/sign, rural/tree, rural/animal). The purpose of this was to identify 
change detection trials that had similar levels of difficulty. Where two trials had similar difficulty, the 
image pairs used in one trial were assigned to stimulus set A and the other image pair was assigned to 
stimulus set B. Some trials appeared to be outliers, in that change detection performance was unusually 
good (high accuracy, low RT) or poor (low accuracy, high RT) for that target category, and these image 
pairs were excluded. This resulted in 40 change-present image pairs for each stimulus set (80 total), with 
four repetitions of each target type.  

For consistency, we also included only 40 change-absent image pairs (20 urban, 20 rural) in each 
stimulus set, and images in each stimulus set were matched on RT and accuracy. 

LƳŀƎŜ ǇŀƛǊǎ ǿŜǊŜ ǇǊŜǎŜƴǘŜŘ ǳǎƛƴƎ ŀ άŦƭƛŎƪŜǊέ ǎŜǉǳŜƴŎŜΣ ƛƴ ǿƘƛŎƘ ƻƴŜ ƛƳŀƎŜ ǿŀǎ ǇǊŜǎŜƴǘŜŘ ŦƻǊ рлл ms, 
followed by a 500 ms blank grey screen, followed by the second image for 500ms and then another 
500 ms blank. The cycle of alternating images and blanks continued until the participant responded, or 
for 30 s, whichever occurred first. Participants were instructed to decide as quickly as possible whether 
a change occurred and then immediately press the space bar to register their decision. They were then 
prompted to report whether a change occurred and, if applicable, the change target. If participants 
failed to respond within 30 s the program automatically proceeded to a response screen that asked 
ǘƘŜƳ ǘƻ ƛƴŘƛŎŀǘŜ ǿƘŜǘƘŜǊ ŀ ŎƘŀƴƎŜ ƻŎŎǳǊǊŜŘΦ !ǾŀƛƭŀōƭŜ ǊŜǎǇƻƴǎŜ ƻǇǘƛƻƴǎ ƛƴŎƭǳŘŜŘ άȅŜǎέ ŀƴŘ άƴƻέ ŦƻǊ 
ǿƘŜǘƘŜǊ ŀ ŎƘŀƴƎŜ ƻŎŎǳǊǊŜŘΣ ŀƴŘ άǾŜƘƛŎƭŜέΣ άƳƻǘƻǊŎȅŎƭŜέΣ άōƛŎȅŎƭŜέΣ άǇŜǊǎƻƴέΣ άŀƴƛƳŀƭέΣ άǘǊŜŜέΣ 
άōǳƛƭŘƛƴƎέΣ άǎƛƎƴέΣ ŀƴŘ άǘǊŀŦŦƛŎ ƭƛƎƘǘέ ŦƻǊ ŎƘŀƴƎŜ target.  

Change-ǇǊŜǎŜƴǘ ǘǊƛŀƭǎ ǿŜǊŜ ŎƻƴǎƛŘŜǊŜŘ άŎƻǊǊŜŎǘέ ƛŦ ǘƘŜ ƻōǎŜǊǾŜǊ ŎƻǊǊŜŎǘƭȅ ƛŘŜƴǘƛŦƛŜŘ ǘƘŜ ŎƘŀƴƎŜ ǘŀǊƎŜǘΣ 
ōǳǘ ǿŜǊŜ ŎƻƴǎƛŘŜǊŜŘ άƛƴŎƻǊǊŜŎǘέ ƛŦ ǘƘŜȅ ǊŜǇƻǊǘŜŘ ƴƻ ŎƘŀƴƎŜ ƻǊ ŦŀƛƭŜŘ ǘƻ ǎŜƭŜŎǘ ǘƘŜ ŎƻǊǊŜŎǘ ŎƘŀƴƎŜ ǘŀǊƎŜǘΦ 
Change-absent trials were considered άŎƻǊǊŜŎǘέ ƛŦ ǘƘŜ ƻōǎŜǊǾŜǊ ǊŜǇƻǊǘŜŘ ƴƻ ŎƘŀƴƎŜΣ ŀƴŘ ǿŜǊŜ 
ŎƻƴǎƛŘŜǊŜŘ άƛƴŎƻǊǊŜŎǘέ ƛŦ ǘƘey indicated a change occurred. 

4.2.4. Self-Report Measures 

During the introductory session participants completed a demographics questionnaire. This included 
questions confirming participants met the screening criteria and description of their usual driving 
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exposure and behaviour. In addition, the Epworth Sleepiness Scale (ESS; Johns, 1991) was used to 
identify if any participants experienced excessive day time sleepiness (ESS>12). 

For the three nights prior to each experimental study session participants were required to keep daily 
sleep diaries of their bed time, estimated sleep onset, night time wakings, and morning awakening and 
rising times. These self-report measures were considered alongside the objective SenseWear Armband 
recording of sleep. 

Participants were asked report their subjective sleepiness on the Karolinska Sleepiness Scale (KSS; 
Åkerstedt & Gillberg, 1990) at the start and end of each study session. The KSS measures subjective 
sleepiness at a given point in time on a 9-point scale: (1) extremely alert; (2) very alert; (3) alert; (4) 
rather alert; (5) neither alert nor sleepy; (6) some signs of sleepiness; (7) sleepy, no effort to stay awake; 
(8) sleepy, some effort to stay awake; and (9) very sleepy, great effort to keep awake, fighting sleep. 

4.2.5. Procedure 

Participants attended the lab for three 30-minute sessions, which were held on separate days at least 
three days apart. These comprised one introductory session followed by two change detection test 
sessions. All sessions were scheduled on weekday afternoons, at either 1400h or 1445. Participants 
completed all three sessions at the same time (i.e., a given participant would complete all three sessions 
at 1400h, or all three sessions at 1445h). One change detection session was completed following a 
normal night of sleep (Normal Sleep; NS) and one after sleep restriction (SR) to five hours, which was 
achieved by instructing participants to delay their bed-time by 3 hours on the night before the SR 
session. The order of change detection sessions (i.e., NS vs. SR first) was counterbalanced between 
participants. Further, presentation of stimulus sets was counterbalanced such that half the participants 
received stimulus set A in the normal sleep session and B in the sleep restriction session, whereas the 
other half received set B in the normal sleep session and A in the sleep restriction session. 

In the introductory session participants provided written informed consent, completed the background 
questionnaires, and were given the SenseWear Armband and sleep diaries with instructions on how to 
use the armband and record their sleep. 

In the two change detection sessions, participants provided their sleep diary and armband to a research 
assistant, who checked the data to ensure compliance with the required hours of sleep. Once this was 
confirmed, the participant completed the KSS to indicate their pre-task subjective sleepiness. 
Participants then completed the change detection task, which included 10 practice trials before the 
main change detection task, with a break halfway through the task. The eye-tracker was calibrated for 
ŜŀŎƘ ǇŀǊǘƛŎƛǇŀƴǘΩǎ ƎŀȊŜ ŀǘ ǘƘŜ ōŜƎƛƴƴƛƴƎ ƻŦ ǘƘŜ ǎǘǳŘȅΣ ŀnd recalibrated after the break, with drift checks 
conducted at the start of each trial to ensure accurate gaze tracking was maintained. Finally, after 
completion of the change detection task, there was a second administration of the KSS to measure post-
task subjective sleepiness.  

4.2.6. Data Analysis 

Paired t-tests were used to compare sleep duration, subjective sleepiness, and oculomotor behaviour 
between the Normal Sleep (NS) and Sleep Restriction (SR) conditions.  
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For change-present trials accuracy, RT, target fixations and dwell time were each analysed using RM-
ANOVA with two within-subjects factors: Sleep Condition (2 levels: NS, SR) and Change Target (5 levels; 
Urban: sign, car, motorcycle, pedestrian, traffic light; Rural: sign, car, motorcycle, animal, tree). Urban 
and Rural results were first analysed separately because the types of change targets varied between the 
environment conditions (i.e., pedestrians and traffic lights changed in urban scenes only; animals and 
trees changed in rural scenes only). 

To compare between Urban and Rural environments only the three target types that appeared in both 
environments (i.e., signs, cars, and motorcycles) were considered. RM-ANOVAs were undertaken with 
three within-subjects factors: Sleep Condition (2 levels: NS, SR); Driving Environment (2 levels: Urban, 
Rural) and Change Target (3 levels: sign, car, motorcycle).  

For change-absent trials, accuracy and RT were compared using RM-ANOVA with two within-subjects 
factors: Sleep Condition (2 levels: NS, SR) and Driving Environment (2 levels: Urban, Rural). 

All statistical analyses were conducted using SPSS 21.0 statistical software. An alpha level of .05 was 
used to determine statistical significance. For ANOVAs, post hoc pairwise comparisons were conducted 
using .ƻƴŦŜǊǊƻƴƛ ǘŜǎǘǎΦ ¢ƻ ǎǳǇǇƭŜƳŜƴǘ ǘƘŜ ƛƴǘŜǊǇǊŜǘŀǘƛƻƴ ƻŦ ǘƘŜ ǊŜǎǳƭǘǎΣ ǇŀǊǘƛŀƭ ʹ2 was used as an 
estimate of effect size. Where Mauchly's test indicated that the assumption of sphericity had been 
violated, degrees of freedom were corrected using HuynhςFeldt esǘƛƳŀǘŜǎ ƻŦ ǎǇƘŜǊƛŎƛǘȅΣ ŀƴŘ ŜǇǎƛƭƻƴ όʶύ 
values are listed accordingly. 

4.3. Results 

4.3.1. Participants  

Twenty-two participants were recruited for the study. Two participants dropped out after the first study 
session. Results are presented for 20 participants (14 female).  

All participants were aged 20-30 years (M = 22.35, SD = 2.37, range 20-29). Participants were frequent 
drivers (M = 7.98 hours/week, SD = 8.94, range 1-42), covering a mean of 263 km per week (SD = 258, 
range 30-1000). One participant wore lenses to correct their vision. No participants suffered from 
excessive daytime sleepiness, defined as ESS scores above 12 (M = 4.3, SD = 2.5, range 0-11). Additional 
participant characteristics are presented in Table 4-1. 

Due to dropouts and scheduling issues, there was some inconsistency in the counterbalancing of image 
sets used. Following a normal night of sleep (NS session), 7 participants viewed image set A, whereas 13 
participants viewed image set B in their NS session.  






































































