Computer Modelling of a Test Device for Investigating Injury Causes in Vehicle Rollovers

Mongiardini M., Mattos G., Grzebieta R.
Transport And Road Safety (TARS) - University of New South Wales

2013 ACRS National Conference
November 7-8, 2013 - Adelaide

Outline

- INTRODUCTION
- COMPUTER MODELLING
- CONCLUSIONS
**INTRODUCTION**

---

**Rollover Crashes - Background**

- Rollover crashes are unforgiving events
  - Small percentage compared to all crashes
  - But, high Fatality and Serious-injury rate

- Societal cost of rollover crashes in Australia ≈ 3Bil/year

---

**Rollover Crashes - Injury Modes**

- Three main injury modes in rollover crashes (contained and restrained occupants)
  - Head
  - Neck
  - Chest & Spine

Source: [http://medicalanatomy.net/](http://medicalanatomy.net/)
INTRODUCTION

Vehicle Rollover Testing

- So far, only a mandatory static test to measure roof crush strength
  
  \textit{Stiffer vehicle roof not sufficient!}

- Need for a dynamic rollover crash test
  - Identify root causes for the 3 injury modes
  - Assess performance of countermeasures to prevent/mitigate rollover injuries
  - Rate vehicle rollover safety through standard testing

Rollover Dynamic Testing

- Desired characteristics
  - \textbf{Reliability}: Replicate injuries observed in real-world rollover crashes
  - \textbf{Repeatability/Reproducibility}: consistent and repeatable results
  - \textbf{Flexibility}: Reproduce different rollover scenarios
UNSW Jordan Rollover System (JRS)- 1/3

- Test rig for repeatable dynamic testing of vehicle rollover
  - a) Spinning and dropping vehicle
  - b) Approaching roadbed

UNSW Jordan Rollover System (JRS)- 2/3

- JRS capable of replicating real-world rollover crashes?

- Major phenomena to compare
  - Vehicle kinematics & deformation
  - Occupant injury modes

Comparison of testing outcomes and actual rollover crashes

- Related issue: uncertainty in reconstruction of initial rollover conditions!
  - Consider various initial conditions in the uncertainty range
INTRODUCTION

- Simulations are feasible method to investigate multiple scenarios
  - Various initial conditions within uncertainty range
  - Identify potential problems before testing

- Further, simulations can be invaluable in helping to:
  - Investigate root causes for injuries
  - Assess effectiveness of potential countermeasures

UNSW Jordan Rollover System (JRS)- 3/3

Objective/Methods

- **Objective:** Simulate dynamic rollover testing w/ UNSW JRS

- **Methods:** FE modelling (LS-DYNA)
  - Create accurate model of JRS rig
  - Validate model against a crash test
FE Model

- Accurate modelling of JRS structure & kinematics

- Replicate JRS testing w/ SUV
  - Combination w/ validated model of SUV (Ford Explorer)
  - Focus on vehicle kinematics, roof deformation, and impact loads
    (No model of ATD considered at this stage!)
FE Model

Simulation results

- Realistic vehicle kinematics and deformations

JRD Rollover test w/ Ford Explorer
Time = 0
Model Validation 1/2

- No test results available w/ Ford Explorer
- Test w/ Toyota LandCruiser used instead (similar vehicle)
  - Similar inertial properties
  - Still some difference expected (potentially different roof structure)
    - FE Model (Ford Explorer) SWR≈2.2 (stiffer roof)
    - Test (Toyota LandCruiser) SWR <1.5

Model Validation 1/2

- Test w/ Toyota LandCruiser
  - Initial Conditions
    - Roll Angle: 153 deg
    - Pitch Angle: 5.1 deg
    - Yaw Angle: 10 deg
    - Roll Rate: 181 deg/sec
    - Drop Height: 117 mm
    - Roadbed Speed: 24 km/h
Model Validation 1/2

- Test w/ Toyota LandCruiser

Model Validation 2/2

- Physical phenomena compared:
  - Vehicle kinematics

<table>
<thead>
<tr>
<th>0 ms</th>
<th>198 ms</th>
<th>258 ms</th>
<th>578 ms</th>
</tr>
</thead>
</table>

Computer Modelling of a Test Device for Investigating Injury Causes in Vehicle Rollovers
Model Validation 2/2

- Physical phenomena compared:
  - Vehicle kinematics
    - Very similar Roll Rate

- Vehicle roof deformation
  - Smaller simulated crush (due to Explorer stiffer roof)
  - Same failure mode (i.e., roof buckling w/ plastic hinge)

---

### Vehicle Roll Rate vs. Roll Angle

- **Experimental Test**
- **Simulation**

### Roof Crush Measurements

<table>
<thead>
<tr>
<th>Component</th>
<th>Test</th>
<th>Sim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal component</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>Vertical component</td>
<td>395</td>
<td>239</td>
</tr>
</tbody>
</table>
Model Validation 2/2

- Physical phenomena compared:
  - Vehicle kinematics
  - Vehicle roof deformation
  - Roadbed load
    - Earlier and larger peaks for simulated load (due to Explorer stiffer roof)

Conclusions

- Developed FE model can reproduce JRS testing w/ reasonable accuracy
  - Similar vehicle kinematics
  - Smaller roof deformation & higher roadbed load justified by stiffer roof than the tested vehicle
- Computer modelling will be beneficial for tuning and assessing the JRS rig:
  - Sensitivity analysis for critical test parameters (e.g., roadbed mass or friction)
  - Identification of extreme testing conditions for the rig
  - Identification of critical configurations @ which typical real-world crash injuries occur (focus testing on identified critical scenarios)
Acknowledgments

- Funding sources
  - DROP Project funded by Australian Research Council (LIEF Project No. LE0989476)
  - Monash University
  - Industry partners
  - Centre for Road Safety at Transport for NSW
  - NSW Motor Accident Authority (MAA)
  - Office of Road Safety at Main Roads WA
  - Center for Injury Research (CfIR) – USA

- Technical and logistical support
  - CrashLab at TfNSW
  - Acen Jordan (Jordan & Co), and Josh Jeminez, Susie Bozzini and Don Friedman (CfIR)

Questions?