Interface Analysis and Design: Improving Heavy Vehicle Road Safety Barrier Design

A/Prof (adjunct) George Rechnitzer
Prof. Raphael Grzebieta
Transport & Road Safety (TARS) - University of New South Wales
Outline

- Introduction
 - Safe system approach and current injury rates
 - Interface Analysis Design (IAD)
 - Heavy vehicle impacts

- Example IAD case
 - Bolte Bridge approach barrier impact
 - High performance bridge barrier analysis
 - Current code requirements
 - Safe System Controls

- Conclusions and Recommendations
Vision Zero and Safe Systems

- Road system designers responsible for the level of safety achieved
- Safe drivers, on safe roads, in safe vehicles
The Safe System approach

• The Safe System approach to road safety recognises the need for responsible road user behaviour, but also accepts that human error is inevitable. It therefore aims to create a road transport system that makes allowance for errors and minimises the consequences: in particular, the risk of death or serious injury.
Contributed Articles

Please note that our November 2009 Journal will have a major focus on motorcycle safety. If you would like to write a ‘Letter to the Editor’ or submit an article, please send it as a MS Word document to journaleditor@acrs.org.au by 10th September.

Interface Design:
The Next Major Advance in Road Safety

By Dr George Rechnitzer, Shane Richardson, Maxwell Shifman & Dr Andrew Short
Delta-V Experts, Melbourne, Australia Web: www.dvexperts.net Tel: (03) 9481 2200.
Interface Design

• Breakdowns in system safety at various interfaces.
• Either causal or increase the risk of injury.
• Focus on interfaces to reduce crash risk, crash severity and injury risk.
Interface Design

• “Interface Design” as a potential catalyst for the next major advances in road safety.

• A holistic approach which encourages all involved in the development of systems to consider all possible interfaces of their project.
1. Behavioural interfaces

- Interface design when applied to the vehicle operator is concerned with vehicle control and crash avoidance by the vehicle operator or independently.
- Interfaces with other road users (pedestrians, cyclists, motorcycles)
2. Vehicles and Road interfaces

• This relates to the opportunity available in the road transport system for collisions of all sorts.

• Interface design for vehicle crashworthiness includes vehicle-to-vehicle crashes as well as compatibility with heavy vehicles and road infrastructure, level-crossings and so on.
3. Human-impact interface

• Injury prevention in a crash is a function of the interface between the human and whatever is impacted or restrains the human during an impact.
Under –run crashes – fatal interfaces
Truck underrun- Offset incompatibility
Good interface design: Crash test, energy absorbing, centred, 75 km/hr
Heavy vehicles- safety is a matter of interfaces

It is not mass difference that determines impact outcomes but interface design!

Can a pedestrian be ‘safely’ impacted by a 1000t train at a 100km/h?
Example 1: Pedestrian - train impact

Airbag - Length ‘D’

V = 100

V = 0
Example 1: Pedestrian - train impact – post impact

V = 100

Airbag - crush ‘S’

V = 100
Example 2: Vehicle - train impact - 2
Example 2: Vehicle - train impact - 3
Figure 15: Example of typical W-beam guardrail (manufactured by Armco)

Figure 16: Motorcycle interaction with a typical wire rope barrier. Other interactions involve the motorcyclist sliding or vaulting into the barrier.

Figure 17: Computer model of a displaced rider impacting a ‘W’ beam guardrail segment [very hazardous interface], and one fitted with a well design energy absorbing system [low injury risk impact interface].
Diana Crash

No barrier!
She would be alive today if there had been one

We learn our lessons hard!
Ferntree Gully Road, Melbourne (before)
Improved interface
Monash simulations for determining barrier loads and height (MADYMO)

Objectives:

To simulate the dynamic response of a 44 tonne truck impacting a High Performance Level Bridge Barrier

To assess if the safety performance of this barrier would meet the NCHRP 350 Level 6 evaluation criteria

To calculate dynamic loads in the bridge barrier/deck for the case of a 44 tonne truck impact

To provide ultimate load estimation for bridge designers in developing prototype barriers
TRUCK BASE MODEL

Prime Mover
C.G.H =1700

Trailer C.G.H =1900

Dimensions:
- Length: 9870 mm
- Width: 3020 mm
- Height: 1300 mm
- Overhang: 14550 mm
- Bridge rails: 1250 mm
- Axle spacing: 650 mm

Additional notes:
- Dimensions are approximate and subject to variation.
- May be relevant for bridge rail height considerations.

Bridgerails
TRUCK BASE MODEL
Truck Models Simulated

<table>
<thead>
<tr>
<th>Model</th>
<th>Wheel Space (m)</th>
<th>Prime Mover Mass (kg)</th>
<th>Prime Mover CG Height (m)</th>
<th>Trailer Mass (kg)</th>
<th>Trailer CG Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Truck</td>
<td>4.9</td>
<td>8000</td>
<td>1.7</td>
<td>36000</td>
<td>1.9</td>
</tr>
<tr>
<td>(base model)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck01</td>
<td>4.4</td>
<td>12000</td>
<td>1.7</td>
<td>33000</td>
<td>1.2</td>
</tr>
<tr>
<td>Truck02</td>
<td>4.4</td>
<td>12000</td>
<td>1.7</td>
<td>33000</td>
<td>2.5</td>
</tr>
<tr>
<td>Truck03</td>
<td>10.4</td>
<td>12000</td>
<td>1.7</td>
<td>33000</td>
<td>1.2</td>
</tr>
<tr>
<td>Truck04</td>
<td>10.4</td>
<td>12000</td>
<td>1.7</td>
<td>33000</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Assumptions used to calculate bridge barrier sectional stiffness:

- Young’s modulus for reinforced concrete 40,000 MPa
- Density 2600 kg/m3
- The ultimate tensile strength 3 MPa
TRUCK MODEL

Truck modelled as a multibody system

It consisted of 14 bodies representing the prime mover, the trailer and 12 wheels

The connection between the prime mover and trailer was modelled as a revolution joint
High Performance Safety Bridge Barrier Section

Typical section of high containment level bridge barrier

Case 1 - 1.51m high cast in place concrete
BRIDGE BARRIER MODEL
Multibody model, 60m length @1m each

Point Restraint (L_x, L_y, L_z)

L_z: Translation allowed
R_z: Rotation allowed
SIMULATION RESULTS
- Base Model-44Tonne Truck Impact at 100 km/h and 15deg

Transvers Outward Load Distribution Along Barrier Length On Impact
(time = 70 ms)
SIMULATION RESULTS
- Base Model-44Tonne Truck Impact at 100 km/h and 15deg

Vertical Downward Load Distribution Along Barrier Length On Impact
(time = 70 ms)
Simulation Results

Kinematics

<table>
<thead>
<tr>
<th>Truck01</th>
<th>Truck02</th>
<th>Truck03</th>
<th>Truck04</th>
</tr>
</thead>
<tbody>
<tr>
<td>@100kph/15deg</td>
<td>@100kph/15deg</td>
<td>@100kph/15deg</td>
<td>@100kph/15deg</td>
</tr>
</tbody>
</table>

BRIDGE RAILS

- Truck01: Simulation images showing the truck at 100kph with a 15-degree angle.
- Truck02: Similar to Truck01.
- Truck03: Same as Truck01.
- Truck04: Same as Truck01.

The images are arranged to show the progression of each truck's movement along the bridge rails at different time intervals.
SIMULATION RESULTS

Kinematics (PM 12tons, 4.4m, 1.7 CoG; Trailer 33tons, 2.2m CoG)
Actual Crash on Bolte Bridge Overpass Victoria (100 km/h at around 30 – 40 deg.)

Empty truck (lighter)
Actual Crash on Bolte Bridge Overpass Victoria (100 km/h at around 30 – 40 deg.)

Empty truck (lighter)
Actual Crash on Bolte Bridge Overpass

Plastic failure yield line analysis commonly used for a concrete bridge barrier
AS5100.2-2004 Test Levels match AS/NZS3845:1999 and new standard based on MASH

specified in AS 5100.2-2004, Appendix A, Table A2 for Special Performance Barriers

<table>
<thead>
<tr>
<th>Barrier Performance Level</th>
<th>Ultimate Transverse Outward Load (kN)</th>
<th>Ultimate Longitudinal or Transverse Inward Load (whichever larger) (kN)</th>
<th>Vehicle Contact Length for Transverse and Longitudinal Loads (m)</th>
<th>Ultimate Vertical Downward Load (kN)</th>
<th>Vehicle Contact Length for Vertical Loads (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater than Test Level 6* (44 t articulated van)</td>
<td>1000</td>
<td>330</td>
<td>2.5</td>
<td>380</td>
<td>15</td>
</tr>
<tr>
<td>Test Level 6 (36 t articulated tanker)</td>
<td>750</td>
<td>250</td>
<td>2.4</td>
<td>350</td>
<td>12</td>
</tr>
<tr>
<td>Computer Simulation Results (44 t articulated truck)</td>
<td>830</td>
<td>200</td>
<td>2.5</td>
<td>650</td>
<td>15</td>
</tr>
</tbody>
</table>

* Test Level 6 is the highest crash test severity level adopted in AS/NZS 3845:1999 which in turn is based on the US NCHRP 350 crash test procedures. The US has a set of six crash test levels, TL1 to TL6 developed as part of the National Cooperative Highway Research Program, published in Report 350 (NCHRP, 350, 1993). The crash test procedures required by AS/NZS 3845:1999 are based on the Federal Highway Administration (FHWA) NCHRP 350 (1993) report and Australian jurisdictions generally require compliance with NCHRP 350, or other equivalent procedures.
AS5100.2-2004 Test Levels match AS/NZS3845:1999 and new standard based on MASH

specified in AS 5100.2-2004, Appendix A, Table A2 for Special Performance Barriers

<table>
<thead>
<tr>
<th>Barrier Performance Level</th>
<th>Ultimate Transverse Outward Load (kN)</th>
<th>Ultimate Longitudinal or Transverse Inward Load (whichever larger) (kN)</th>
<th>Vehicle Contact Length for Transverse and Longitudinal Loads (m)</th>
<th>Ultimate Vertical Downward Load (kN)</th>
<th>Vehicle Contact Length for Vertical Loads (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater than Test Level 6* (44 t articulated van)</td>
<td>1000</td>
<td>330</td>
<td>2.5</td>
<td>380</td>
<td>15</td>
</tr>
<tr>
<td>Test Level 6 (36 t articulated tanker)</td>
<td>750</td>
<td>250</td>
<td>2.4</td>
<td>350</td>
<td>12</td>
</tr>
<tr>
<td>Computer Simulation Results (44 t articulated truck)</td>
<td>830</td>
<td>200</td>
<td>2.5</td>
<td>650</td>
<td>15</td>
</tr>
</tbody>
</table>

* Test Level 6 is the highest crash test severity level adopted in AS/NZS 3845:1999 which in turn is based on the US NCHRP 350 crash test procedures. The US has a set of six crash test levels, TL1 to TL6 developed as part of the National Cooperative Highway Research Program, published in Report 350 (NCHRP, 350, 1993). The crash test procedures required by AS/NZS 3845:1999 are based on the Federal Highway Administration (FHWA) NCHRP 350 (1993) report and Australian jurisdictions generally require compliance with NCHRP 350, or other equivalent procedures.
AS5100.2-2004 Test Levels match AS/NZS3845:1999 and new standard based on MASH

Recommended design loads specified in AS 5100.2-2004, Table 11.2.2 and Appendix A, Table A1.

<table>
<thead>
<tr>
<th>Barrier Performance Level</th>
<th>Ultimate Transverse Outward Load (kN)</th>
<th>Ultimate Longitudinal or Transverse Inward Load (whichever larger) (kN)</th>
<th>Vehicle Contact Length for Transverse and Longitudinal Loads (m)</th>
<th>Ultimate Vertical Downward Load (kN)</th>
<th>Vehicle Contact Length for Vertical Loads (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium (informative)</td>
<td>500</td>
<td>170</td>
<td>2.4</td>
<td>350</td>
<td>12</td>
</tr>
<tr>
<td>Regular (normative)</td>
<td>250</td>
<td>80</td>
<td>1.1</td>
<td>20</td>
<td>5.5</td>
</tr>
<tr>
<td>Low (normative)</td>
<td>125</td>
<td>40</td>
<td>1.1</td>
<td>20</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Road Safety Simulations – now with LSDYNA

- Concrete bridge rail (Tractor-Trailer)
 - NCHRP-350 5-12 (82.7 km/h, 16.2 deg.)

Simulation of TTI Test 7069-13
Time - 0
Road Safety Simulations – now with LSDYNA

http://tractor-trailer.model.ntrci.org/download/download.cgi
National Transportation Research Center, Inc

Download models and reports

Here you can download the FEM models and reports for the project. The available FEM models are:

1. standalone models for tractors and trailers
2. crash scenario models

The standalone models for tractors and trailers have different wheelbases and lengths as needed for simulations of the tests. The standalone models are documented in the Model section of the web site. The line numbers in the files correspond to the lines shown in the documentation.

Crash scenario models include tractor, trailer, ballast, barrier and coupling between the tractor and the trailer. These models also can have large initialization files for accounting for gravity initialization.
Conclusions & Recommendations

- Interface Analysis and Design:
 - Bolte Bridge crash highlighted incompatibilities in the interface analysis and design of the bridge barrier–road-traffic system design.
 - To reduce impact loads, for example, trucks should be limited to a top speed of 60 km/h and kept to the left lane with no overtaking in the case of bridge barriers where only Low or Regular barriers have been installed. ……
Conclusions & Recommendations

- Interface Analysis and Design:
 - On bridges, truck speed needs to be reduced significantly and the trucks kept close to the barrier to reduce the impact angle to less than 15 degrees if possible.
 - What speeds and what angles should be determined from further research simulating typical crashes, using current validated Finite Element programs that are now freely available via the internet.
Conclusions & Recommendations

- Interface Analysis and Design:
 - In Interface Design we explicitly recognise that failures in our road safety system occur because of breakdowns in system safety at various interfaces.
 - By paying due attention to interface design we open up our thinking to an increased range of countermeasures possibilities, and provide opportunities for improving road safety and reducing risk.
Questions?

Together we can save lives.