Reducing pedestrian collisions in Melbourne’s Central Business District

Jennie Oxley, Jeremy Yuen, Bruce Corben, Effie Hoareau, David Logan
Monash University Accident Research Centre, Monash Injury Research Institute
Increased amount of walking

- Obvious benefits for health and well-being, and many environmental benefits

- City of Melbourne promotes active transport
 - Sets key directions and targets for a growing city
 - Supports convenient and safe walking, cycling and public transport use as the dominant modes of transport
 - Currently 51% of all trips to and within the city are by walking, cycling or public transport – this is expected to increase to 80% by 2030
 - Around 800,000 people move through the city every day; this is expected to increase to more than one million by 2030
The risks.....

- This major modal shift means:
 - Many more vulnerable road users
 - Potentially increased risks amongst vulnerable road user groups
 - We need to understand the risks and provide a safe and comfortable walking environment.

- There is little consideration of the impact of the built environment on overall safety of vulnerable road users

- Aims:
 - Identify key factors in pedestrian collisions in the Melbourne CBD area.
 - Make recommendations for countermeasures that can achieve major steps forward to eliminating serious pedestrian trauma
Methods

- Analysis of Victorian Police-reported crash data between January 2000 to December 2011.

- Serious casualty pedestrian collisions within the CBD defined areas extracted.
 - Area defined as Melbourne city grid within Spring St, Flinders St, Spencer St & La Trobe St, plus segment of Flemington Rd (north of CBD)

- Selected variables analysed to highlight pedestrian collision patterns and contributing factors, including:
 - Pedestrian characteristics (age, gender, BAC level, activity, etc.);
 - Environmental characteristics, road geometry, DCA, time of day and day of week, speed zone, and traffic control type; and
 - Injury severity.
Victoria:
- 17,301 pedestrian collisions (3% fatalities, 43% serious injuries, 53% other injuries)
- An overall downward trend, but no significant reduction

CBD:
- 451 pedestrian collisions (2% fatalities, 70% serious injuries, and 28% other injuries)
Key findings:

- Higher proportion of males involved in collisions
- Majority were young adults aged between 18-34 years
- Males over-represented in young adult age groups, females over-represented in very young (under 17 years) and older (65+ years)
- Majority of collisions occurred while pedestrians were crossing the carriageway, and significant proportion while boarding/alighting trams

Table 1. Characteristics of pedestrians involved in collisions

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Fatalities (n=10)</th>
<th>Serious Injuries (n=316)</th>
<th>Other Injuries (n=125)</th>
<th>Total (n=451)</th>
</tr>
</thead>
<tbody>
<tr>
<td><17 years</td>
<td>0</td>
<td>5.8</td>
<td>7.4</td>
<td>6.1</td>
</tr>
<tr>
<td>18-34 years</td>
<td>20.0</td>
<td>49.8</td>
<td>51.2</td>
<td>49.7</td>
</tr>
<tr>
<td>35-64 years</td>
<td>60.0</td>
<td>36.9</td>
<td>34.7</td>
<td>36.8</td>
</tr>
<tr>
<td>>65 years</td>
<td>20.0</td>
<td>7.4</td>
<td>6.6</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Gender:

<table>
<thead>
<tr>
<th>Gender</th>
<th>Fatalities (n=10)</th>
<th>Serious Injuries (n=316)</th>
<th>Other Injuries (n=125)</th>
<th>Total (n=451)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>50.0</td>
<td>53.9</td>
<td>52.8</td>
<td>53.6</td>
</tr>
<tr>
<td>Female</td>
<td>50.0</td>
<td>46.1</td>
<td>46.4</td>
<td>46.4</td>
</tr>
</tbody>
</table>

Pedestrian movement:

<table>
<thead>
<tr>
<th>Pedestrian movement</th>
<th>Fatalities (n=10)</th>
<th>Serious Injuries (n=316)</th>
<th>Other Injuries (n=125)</th>
<th>Total (n=451)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossing Carriageway</td>
<td>70.0</td>
<td>71.2</td>
<td>78.4</td>
<td>73.3</td>
</tr>
<tr>
<td>Working/lying/standing on carriageway</td>
<td>0</td>
<td>6.0</td>
<td>4.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Walking on carriageway</td>
<td>10.0</td>
<td>7.3</td>
<td>4.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Pushing/working on vehicle</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>Walking to/from or boarding tram/vehicle</td>
<td>10.0</td>
<td>6.3</td>
<td>8.8</td>
<td>7.2</td>
</tr>
<tr>
<td>Not on carriageway</td>
<td>10.0</td>
<td>5.1</td>
<td>3.2</td>
<td>4.7</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>1.6</td>
</tr>
</tbody>
</table>
DCA:

- Near-side collision (DCA 100) was the most common crash type, especially for a fatal outcome.
- Substantial proportion were far-side collisions (DCA 102), especially for serious and other injury outcomes.
Additional collision characteristics

- **Location:**
 - Almost half of collisions (49%) occurred at cross intersections, and additional 12% at T-intersections. The remainder (39%) occurred at mid-block locations.

- **Speed zone:**
 - Most occurred in 60 km/h and 50 km/h speed zones (32% and 63%, respectively).

- **Time:**
 - Collisions occurred on all days of the week, slightly higher on Fridays.
 - One-third occurred at night (especially between midnight and 6am).
 - Almost one-quarter occurred during late afternoons.

- **Vehicle:**
 - The majority (64%) were private passenger vehicles.
 - Public transport vehicles also contributed to a substantial proportion of collisions (tram: 9%; bus: 4%).
Spatial mapping
Satellite view of Melbourne CBD collisions
Spatial mapping findings

- Examination of the spatial pattern of collisions revealed some clustering of collisions

- Collisions at night and weekends:
 - Clustered around night clubs and bars
 - Involved a higher proportion of young adult males
 - Intersection crossings
 - Higher severity injury outcomes

- Collisions during business hours:
 - Evenly distributed throughout weekdays,
 - Across multiple locations on streets,
 - More prevalent around public transport facilities
 - Less severe injury outcomes
Implications of findings

- **Speed reduction**
 - Adoption of lower speed limits (30-40 km/h) on roads within the CBD area with high pedestrian activity
 - Additional measures to increase speed limit compliance and appropriate travel speed and include ITS applications and traffic calming measures.

- **Improved intersection design**:
 - Provide adequate sight distance for both pedestrians and drivers
 - Minimise pedestrian crossing distance, time and exposure to potential conflicts
 - Maximise pedestrian visibility
 - Measures to slow traffic on intersection approaches
 - Appropriately reflect the street and transportation context
Implications (cont.)

- **Enhanced public transport stops**
 - Successful transit systems have safe and convenient pedestrian access and provide comfortable waiting areas.
 - Select appropriate and safe locations, taking into consideration:
 - Adequate sight lines between approaching vehicles and passenger waiting and loading areas,
 - Convenience – minimising walking distance and reduce the number of roadway crossings for pedestrians and located with good proximity to destinations in the surrounding area.
 - Provide effective ‘safety zones’ and safe conditions for pedestrians travelling to and from transit stops
 - Ensure walking and public transport systems are balanced and supportive of each other
 - Adequate footpaths, pathways and safe access roadway crossings
Implications (cont.)

- **Night time collisions:**
 - Educational and behavioural measures such as ‘Responsible Serving of Alcohol’ and safe drinking guidelines
 - Enforcement measures
 - Infrastructure-based countermeasures:
 - Reduced pedestrian exposure to high crash risk: i) reducing excessive roadway widths, ii) encouraging greater use of crossing facilities by providing fences/barriers to direct pedestrians to cross-walks, iii) automatic pedestrian phases on every cycle;
 - Simplified crossing task: i) highly responsive pedestrian-operated signals, ii) medians or refuges, iii) well-maintained lane line markings to strengthen driver lane discipline, iv) ‘dwell-on-red’ initiative to improve driver responses at/on approach to intersections;
 - Improved driver responses: i) above-standard street lighting, skid resistant pavement surfaces and pedestrian warning signs
Conclusions

- Meeting the current and predicted volumes of pedestrians requires an understanding of mobility and safety needs
 - The City of Melbourne Transport Strategy 2012

- Findings of this analysis identified a number of approaches to manage key pedestrian collision types in the built environment, including
 - Improved land use and spatial design and planning of the pedestrian environment to enhance the ‘walkability’ of the city centre
 - Enhancements to intersection design and operation
 - Improved pedestrian access to and from public transport vehicles
 - Measures to improve pedestrian facilities around entertainment areas at night
 - Measures to moderate vehicle speeds
Thank You

For more information:
Jennie.Oxley@monash.edu