Validation of an in-vehicle monitoring device for measuring driving exposure and deceleration events

Lauren Meredith, Julie Brown, Elizabeth Clarke, Kristy Coxon, Soufian Boufous, Rebecca Ivers, Lisa Keay
IN VEHICLE MEASURING DEVICE:
Being used in a 12-month Randomised Controlled-Study to measure the impact of a safe driving program for older drivers

Used to measure outcomes of interest
OUTCOMES OF INTEREST:

1. Safety (near misses and crashes)
2. Driving exposure (speeds, time of day, routes)
Definitions

CRASH:
Any contact with an object, either moving or fixed, at any speed, in which kinetic energy is measurably transferred or dissipated.

NEAR-MISS:
rapid, evasive manoeuvre by the subject vehicle to avoid a crash

- RAPID DECELERATION EVENT
Rapid Deceleration Event

- Will be used to identify possible ‘incidents’

- A threshold must be set to alert these possible incidents

- Confirm if actual crash or near crash occurred by telephone call to the participant
Deceleration Data from a Crash Reported from an In-Vehicle Monitoring Device
In-Vehicle Monitoring Device

Diagram showing the components of a vehicle monitoring system:
- Trial Database
- Speed Limits Database
- Data management portal
- Monitoring server
- GPS
- Final data
- Captured data
- Password protected secure server

The George Institute for Global Health
Laboratory studies and a field study were used to validate the in-vehicle monitoring devices and verify the rapid deceleration event threshold:

1. Stationary device study
2. Low-speed impact crash test study
3. Field study
AIM: To determine whether the accelerometer experiences drift over time and validate calibration

METHOD: Device left stationary for two days with data recording

RESULTS: No drift experienced, however there was an offset on each three axis and noise in the signal
Low-Speed Impact Crash Test Study

AIMS:

1. Model different types of acute deceleration events which may be experienced by the participants and investigate drift and change in calibration after a series of impacts.

2. Review the data output in terms of magnitude of deceleration measured and duration of events from the black box device in relation to the testing matrix and measured deceleration.
Low-Speed Impact Crash Test Study

METHOD:

Different deceleration events modelled using different sled mass, air spring pressure and sled run distance
Low-Speed Impact Crash Test Study - Results
Field Study

AIM: Test a custom Matlab program during regular driving to field test the threshold for identification of rapid deceleration events.

METHOD: A black box was installed in the vehicles of three older driver participants and data was continuously captured. Rapid deceleration event thresholds set at 550 milli-g, 600 milli-g and 650 milli-g. These thresholds were chosen based on thresholds used in literature but allowing for system noise.
Field Study - Results

<table>
<thead>
<tr>
<th></th>
<th>Participant 1</th>
<th>Participant 2</th>
<th>Participant 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>81</td>
<td>84</td>
<td>83</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Total trips</td>
<td>21</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td>Longest trip distance (km)</td>
<td>18.19</td>
<td>10.27</td>
<td>6.53</td>
</tr>
<tr>
<td>Longest trip duration (min)</td>
<td>25.16</td>
<td>33.10</td>
<td>13.02</td>
</tr>
<tr>
<td>Furthest radius from home (km)</td>
<td>15.5</td>
<td>5.97</td>
<td>3.76</td>
</tr>
<tr>
<td>Total distance driven day (km)</td>
<td>62.04</td>
<td>53.49</td>
<td>21.7</td>
</tr>
<tr>
<td>Total distance driven night (km)</td>
<td>0.04</td>
<td>49.82</td>
<td>0</td>
</tr>
<tr>
<td>Number of events ≥550milli-g</td>
<td>10</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Number of events ≥ 600milli-g</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Number of events ≥ 650milli-g</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Field Study - Results
Discussions and Limitations

INITIAL DEVICE TESTING:
Determine the offset of each device prior to instalment into each participants car

RAPID DECELERATION EVENT THRESHOLD:
Set to a higher level (+50milli-g) than expected to account for the fluctuations
Subset of events over 1000milli-g may represent more significant events
Device limitation- cannot measure over 2000milli-g, however, only needs to measure the presence of an event
Discussions and Limitations

LATERAL THRESHOLD:
Was not investigated as it involves complex mechanisms and potentially more than a simple threshold
This is a limitation of the study as there is events such as swerving which occur in the lateral direction
Further investigation needed

EXPOSURE DATA:
In-vehicle monitoring device provides a valid method for measuring changes in driving behaviour
Future Work

- Completion of the field testing
- Two black boxes in a car
- Driving with a log book
- Filtering data to minimize noise
Conclusion

- The validity of using an in-vehicle monitoring system for measuring the specified outcomes has been demonstrated.

- Care is needed when using this technology and several factors need to be accounted for:
 - Accuracy of calibration
 - Signal noise
 - Validity of events being recorded
Collaborations and Partnerships

Australian Government
Australian Research Council

Smart Car Technologies