Comparing the Characteristics of the Target and Bullet Vehicle for Injury Severity in Two Vehicle Crashes

Hayder Al Taweela, Amir Sobhanib, William Younga

aDepartment of Civil Engineering, Monash University; bARRB Group Ltd

Abstract

This paper undertakes an in-depth analyses of the driver reaction and crash severity of the target and bullet vehicles in two vehicle crashes. Previous driver reaction and crash predictive modelling are reviewed. Statistical analysis (Cross tabulation, Chi-Square test and T-test) are conducted to identify the relationship between injury severity human; vehicle; road geometric; environmental; and crash or dynamic factors for the target and bullet vehicle. The 2009 – 2014 National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) is used in the analysis. The results indicates that struck and striking drivers are differentiated in terms of the human factors, age, gender, and delta V. For instance, high percentage of severe or fatalities is related to:

a) male drivers over female (Figure 1).

b) struck over striking vehicles at delta V more than 20 km/hr (Figure 3).

c) risky segments; non interchange and non-junction or intersection. Right angle crashes are the most risky for driver among other crashes types.

Future work could investigated the differences between single and two vehicle crashes related to crash severity and driver avoidance manoeuvers.

Background

Road traffic injuries are amongst the most important health, societal, and economical issues in the world. Worldwide there are an estimated more than 1.2 million people killed in road accidents each year and approximately between 20 and 50 million non-fatal injuries (Peden, 2008). Thus, various studies have investigated injury severity from five point of views depending on the influencing factors. These factors are categories into the following five groups: 1) human characteristics; 2) vehicle characteristics; 3) road geometric characteristics; 4) environmental characteristics; 5) crash or dynamic factors. There is a lack in literature in terms of analyzing the characteristics of each vehicle individually in the dynamic point of view.

Method

A Chi-Square Goodness of Fit test and T-test are conducted to distinguish between target and bullet vehicles in related to crash severities. Three groups of analysis of real-world crash classified into “Serious Injuries, Minor Injuries, and Property Damage Only (PDO)”. Each group is also explored through the use of associated parameters.

Results

Before answering the research question. The associated factors is outlined, as well as a detailed explanations of the analysis that is under gone. The summary of each part of the analysis are presented (See Figure 1, 2 and Table 1), and finally some recommendations as to future used for the data are suggested.
Figure 1. Severe and Fatal Percentage of Severe and Fatal Collisions related to gender for Struck and Striking Vehicles

Figure 2. Severe and Fatal Percentage of Severe and Fatal Collisions related to age for Struck and Striking Vehicles

Table 1. Relationship between delta V and the severity of crashes

<table>
<thead>
<tr>
<th>Change in velocity KM/HR.</th>
<th>Struck</th>
<th>PDO</th>
<th>Severe or Fatal</th>
<th>Minor</th>
<th>Total</th>
<th>Striking</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 19</td>
<td>1263</td>
<td>69%</td>
<td>13</td>
<td>10%</td>
<td>779</td>
<td>2055</td>
</tr>
<tr>
<td>20 - 39</td>
<td>511</td>
<td>28%</td>
<td>50</td>
<td>40%</td>
<td>765</td>
<td>1326</td>
</tr>
<tr>
<td>40 - 59</td>
<td>62</td>
<td>3%</td>
<td>34</td>
<td>27%</td>
<td>152</td>
<td>248</td>
</tr>
<tr>
<td>60 and over</td>
<td>6</td>
<td>0%</td>
<td>27</td>
<td>22%</td>
<td>33</td>
<td>66</td>
</tr>
<tr>
<td>Sub. Total</td>
<td>1842</td>
<td>100%</td>
<td>124</td>
<td>100%</td>
<td>1729</td>
<td>3695</td>
</tr>
<tr>
<td>Total</td>
<td>1842</td>
<td>50%</td>
<td>124</td>
<td>3%</td>
<td>1729</td>
<td>3695</td>
</tr>
</tbody>
</table>

Proceedings of the 2016 Australasian Road Safety Conference
6 – 8 September, Canberra, Australia
Extended Abstract

Taweel et al.

Proceedings of the 2016 Australasian Road Safety Conference
6 – 8 September, Canberra, Australia

<table>
<thead>
<tr>
<th></th>
<th>14</th>
<th>1%</th>
<th>25</th>
<th>30%</th>
<th>25</th>
<th>1%</th>
<th>64</th>
<th>2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 and over</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub. Total</td>
<td>1914</td>
<td>100%</td>
<td>84</td>
<td>100%</td>
<td>1835</td>
<td>100%</td>
<td>3833</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>1914</td>
<td>50%</td>
<td>84</td>
<td>2%</td>
<td>1835</td>
<td>48%</td>
<td>3833</td>
<td>100%</td>
</tr>
</tbody>
</table>

P value for Chi-Square of Struck

<0.0001

P value for Chi-Square of Striking

<0.0001

References

Paleti, R., Eluru, N., & Bhat, C. R. (2010). Examining the influence of aggressive driving behavior on driver injury severity in traffic crashes. Accident Analysis & Prevention, 42(6), 1839-1854.

Xie, Y., Zhao, K., & Huynh, N. (2012). Analysis of driver injury severity in rural single-vehicle crashes. Accident Analysis & Prevention, 47, 36-44.