A new Approach to Evaluating New Vehicle Safety Technologies using Meta-Analysis

Brian Fildesa, Michiel van Ratingenb, Anders Liec, Michael Kealld & Claes Tingvallc

a Monash University Accident Research Centre, Australia; b Euro NCAP, Belgium; c Swedish Transport Administration (Trafikverket), Sweden; dOtago University, New Zealand

Abstract

This study reports on a collaborative research program initiated by Euro NCAP that explores the possibility for evaluating new safety technology using multiple databases. The Validating Vehicle Safety through Meta-Analysis (VVSMA) group comprising a collaboration of government, industry, consumer organisations, and researchers. Aggregate analyses of data pooled from a number of jurisdictions is combined to evaluate active safety technologies. An exemplar analysis of low speed AEB City technology is included using a standard rear-end crash analysis format and the established Multiple National Database Study (MUND) approach. Quasi induced exposure was employed to control for extraneous factors. The results showed that AEB City technology led to significant reductions in crashes overall, although individual jurisdiction analyses failed generally to show significant reductions in rear-end crashes. A second study to evaluate Lane Departure Warning (LDW) and/or Lane Keeping Assist (LKA) is currently underway and is expected to report on its findings early next year. With a substantial increase in available data, statistically significant real-world findings were obtained within much shorter timeframes. The meta-analysis approach using data from many jurisdictions is a unique contribution to the evaluation of vehicle safety technologies.

Introduction

The safety of modern passenger cars has improved substantially in recent years. The reasons for this improvement include international vehicle regulations that specify minimum levels of occupant protection, and consumer tests that rate vehicle safety (Stucki, \textit{et al}, 1996; Broughton \textit{et al}, 2000; Ward, 2012; Newstead \textit{et al}, 2013). Improvements have come from greatly improved vehicle structures and materials, as well as new safety technology to better restrain the occupant in a crash and to mitigate against serious injuries. This passive safety approach has focused on preventing injuries, rather than stopping the collision or mitigating injuries. More recently, industry and government initiatives have shifted their focus to improving active safety in vehicles (Giebel \textit{et al}, 2008). In-vehicle safety technologies aimed at preventing the crash are developing fast across the world, driven by the market place, rather than in response to new regulations. However, there is only a limited understanding of the possible (and actual) benefits for most of these systems. An outline on how these active technologies are expected to work is illustrated in Figure 1.

For new systems there are often benefit analyses done based on target population estimates and laboratory verifications of these systems. However, in the hands of everyday drivers the systems may have a different performance. Real world benefits of active safety technologies, are often hampered by the lack of sufficient real-world crash and non-crash data to obtain early and reliable effects of new innovative safety systems in cars. There are simply not enough systems available in each market individually to conduct these analyses. One way of potentially speeding up this process would be to investigate the possibility of collecting and analysing crash data on a broader basis than one jurisdiction can conduct from their limited crash numbers.

To address this problem, a new approach was developed using a meta-analysis approach, the established Multiple National Database Study (MUND) method (Fildes \textit{et al}, 2013) where those
with suitable data from various jurisdictions, conduct their own analysis using a common strategy, and these are then pooled together to form a better estimate of effects of car technologies.

Figure 1. The integrated safety chain

The benefits with this approach are several. First, by pooling, a larger amount of data becomes available, allowing for early analysis of a new system performance, and much sooner than any one jurisdiction can provide. Second, results can be generalized across jurisdictions, still allowing national variation and comparison. Moreover, no raw data needs to be given away from the national statistics of each jurisdiction. To help guide manufacturer, government, and consumer group judgments about which technologies ought to be encouraged, it is critical to establish their potential savings in crashes and injury mitigation. It is expected this will help encourage their introduction and ensure market penetration is optimized.

The VVSMA Consortium

To address this need, the Validating Vehicle Safety using Meta-Analysis (VVSMA) consortium was formed under the auspices of Euro NCAP to conduct analyses of the safety benefits of two emerging technologies, namely AEB City, and Lane Departure Warning (LDW) and/or Lane Keeping Assist (LKA) using the MUNDS approach. The VVSMA consortium involved a number of government, industry, consumer groups and research organisations from Sweden, France, Germany, UK, Italy, Netherlands, and Australia (Table 1) and commenced their activities in 2012. The European Automobile Manufacturer’s Association ACEA maintained a watching brief on the consortium’s deliberations.

Police data from six jurisdictions with a
common core analysis format were used in these analyses. Quasi induced exposure was employed to control for extraneous factors across these databases. A major challenge with the approach was identifying crashed vehicles with and without the technology in each database and having the necessary analytic variables. Identifying the crashes that are potentially influenced by the safety system was also important. For reasons of maintaining confidentiality, it was agreed that the individual results for each jurisdiction would not be identified in any subsequent analysis.

Police data from six jurisdictions with a common core analysis format were used in these analyses. Quasi induced exposure was employed to control for extraneous factors across these databases. A major challenge with the approach was identifying crashed vehicles with and without the technology in each database and having the necessary analytic variables. Identifying the crashes that are potentially influenced by the safety system was also important. For reasons of maintaining confidentiality, it was agreed that the individual results for each jurisdiction would not be identified in any subsequent analysis.

Methodology

There were a number of steps involved in the MUNDS analysis process. First, was the need to identify which vehicles in each jurisdiction’s database had the relevant technology fitted. As Low Speed AEB technology was offered as a standard feature on several particular makes and models, it was possible to simply identify these vehicles by make and model year in the crash data which were then nominated as “case” vehicles.

For comparison, it was necessary to identify similar vehicles that did not have the technology fitted, and these were labelled as “control” vehicles. Care was taken to ensure that the controls comprised a number of vehicles that embraced the range of case vehicle types (body designs, masses, similar market categories, and so on. As active technologies are designed to work on specific crash types, it was important to restrict the analyses to only those “sensitive” crash types. This was agreed upon from the experience of the members of the consortium and other available sources. A quasi induced exposure measure, described by Chandraratna and Stamatiadis (2009), was included, matching both sensitive and non-sensitive crash situations. The appropriate formula for making these assessments as recommended in Keall & Newstead (2009) was:

\[
\text{Effectiveness (E)} = 1 - \frac{(A/B)}{(C/D)}
\]

where:

- A= AEB fitted vehicles as **striking** vehicle
- B= AEB fitted vehicles as **struck** vehicle
- C= Non-AEB vehicles as **striking** vehicle
- D= Non-AEB vehicles as **struck** vehicle

Once the parameters of the analysis were defined, the various data providers then conducted their own analyses and provided these for inclusion in the meta-analysis. Other factors that might have a bearing on the analysis such as the speed of the crash were also identified and adjusted for in the analysis procedure. Further factors such as driver age and sex can also be controlled for, as in an analysis of ESC effectiveness (Fildes *et al.*, 2013).

Meta-analysis is a standard statistical procedure involving logistic regression and data merging techniques that estimate the relative rate of sensitive crashes for the case vehicles compared to that of the equivalent control vehicles. The meta-analysis was weighted by the inverse of the variance of the effectiveness measure for each jurisdiction (as is standard in meta-analysis) and tested for the homogeneity of the effect size. Where possible, separate analyses can be conducted for road type and speed zone if needed to further explain the range of effectiveness of the technology.
The work of the consortium commenced late in 2012 and many of the early months involved identifying suitable data, defining the process, and understanding the method. As most of the members of the consortium were new to the approach, it required time for them to appreciate it and the techniques involved.

Exemplar Analysis – AEB City Effectiveness

To demonstrate how the meta-analysis approach works, an example of a recently published analysis by the VVSMA group is shown below. It involved an effectiveness of low speed Autonomous Emergency Braking (AEB City) technology. A paper containing the full details of this analysis was published recently in the Accident Analysis and Prevention journal (Fildes et al., 2015). A synopsis of the detailed findings is included below.

AEB City Functionality

CarAdvice (2014) noted that Low Speed AEB or City Safe technologies are marketed under a variety of names, including City Brake Control (Fiat), Active City Stop (Ford), City Emergency Brake (Volkswagen) and City Safety (Volvo). As their names suggest, this type of Autonomous Emergency Braking technology is geared towards low speed situations, generally between 30km/h and 50km/h. These systems rely on various types of sensors detecting an emergency situation and apply the brakes as needed. They tend to work most effectively over short distances, usually 12m or less (CarAdvice, 2014).

AEB City Results

The findings in Table 2 showed a strong and significant reduction in rear-end striking crashes for vehicles fitted with the technology over those that didn’t. While the benefits were mainly in low speed urban areas, there seemed to be a small, non-significant, benefit in rural areas too, although this needs further research, given there were very few cases and the likelihood that rural rear-end crashes are relatively rare.

Table 2: Findings for the crash reductions for vehicles fitted with AEB City in rear-end crashes

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Crash Type</th>
<th>AEB</th>
<th>Non-AEB</th>
<th>Effectiveness</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1*</td>
<td>Striking vehicle</td>
<td>21</td>
<td>202</td>
<td>46%</td>
<td>11%</td>
<td>68%</td>
</tr>
<tr>
<td></td>
<td>Struck Vehicle</td>
<td>84</td>
<td>435</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region 2</td>
<td>Striking vehicle</td>
<td>1</td>
<td>138</td>
<td>55%</td>
<td>-303%</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>Struck Vehicle</td>
<td>4</td>
<td>246</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region 3</td>
<td>Striking vehicle</td>
<td>14</td>
<td>434</td>
<td>23%</td>
<td>-57%</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td>Struck Vehicle</td>
<td>16</td>
<td>374</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region 4</td>
<td>Striking vehicle</td>
<td>35</td>
<td>404</td>
<td>34%</td>
<td>-3%</td>
<td>57%</td>
</tr>
<tr>
<td></td>
<td>Struck Vehicle</td>
<td>59</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region 5</td>
<td>Striking vehicle</td>
<td>15</td>
<td>105</td>
<td>43%</td>
<td>-14%</td>
<td>72%</td>
</tr>
<tr>
<td></td>
<td>Struck Vehicle</td>
<td>24</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region 6</td>
<td>Striking vehicle</td>
<td>2</td>
<td>85</td>
<td>12%</td>
<td>-2069%</td>
<td>83%</td>
</tr>
<tr>
<td></td>
<td>Struck Vehicle</td>
<td>1</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Results*</td>
<td></td>
<td></td>
<td></td>
<td>38%</td>
<td>18%</td>
<td>53%</td>
</tr>
</tbody>
</table>

*Statistically significant results
However, while the overall meta-analysis was highly significant, most of the individual jurisdiction analyses failed to reach significance in their own right (apart from Region 1). This confirmed the need for, and advantage of, the meta-analysis approach used here. While the meta-analysis was able to show the effectiveness of the technology in a relatively short period of time, it would have taken considerably more years for most of these jurisdictions to report on the benefits of the technology based on real-world crash data. In short, it confirms the need and advantage of the approach in conducting real-world evaluations of the benefits of emerging active safety technologies.

Exemplar 2 - Lane Departure Warning Effectiveness (LDW/LKA)

A second analysis is currently being undertaken by the VVSMA group, examining the effectiveness of Lane Departure Warning (LDW) and/or Lane Keeping Assistance (LKA) systems. These are designed to warn a driver when the vehicle begins to move out of its lane (unless a turn signal is on in that direction) on roads and highways or apply positive feedback to correct these encroachments. These systems are designed to minimize accidents by addressing the main causes of collisions on rural roads, namely driver error, distractions and/or drowsiness. The identification of these technologies in the crash data presented a challenge as most vehicles on the road offer these technologies as “optional” equipment, making it difficult to identify vehicle makes and models that have the technology onboard in the crash databases.

In Europe there are very few cars where LDW/LKA is standard equipment currently. In addition, there are other issues such as being default-off. It is not possible to be sure that the system is operating from the crash data and cannot automatically assumed to be active when the vehicle is in use. The expected overall effectiveness is therefore will be lower and generally difficult to identify in these data.

As far as the fitment is concerned, this requires access to the Vehicle Identification Number (VIN) of the crashed vehicles that are known to offer the technology and then to match the particular VIN with the presence or absence of the technology. This complicated procedure involves gaining access to VIN details of the individual make and models of each potential case vehicle to identify cases (fitted) as well as the controls (not fitted) and then manually checking each potential relevant case. VIN is not freely available in most databases. As the VIN is uniquely linked to a car and its owner, there are privacy implications in use and hence, both industry and governments are sensitive to its use. This makes the analysis process difficult, but not impossible – some jurisdictions do list VIN and there are some data sources that can help identify the fitment of optional safety equipment from the VIN. The VVSMA consortium is currently working towards overcoming these challenges and ensuring that the real-world effectiveness of LDW/LKA can be established using the meta-analysis approach.

Discussion

There are various methods adopted to estimate the likely effectiveness of new safety technologies. The auto industry for instance invests considerable resources in developing forecasting (prospective) systems based on simulations of real accidents, using traffic, vehicle and driver models (Page et al., 2015). This pre-production “Prospective Effectiveness Assessment for Road Safety (PEARS)” approach relies on virtual analyses by means of simulation, assuming various driver behavioral characteristics. Alternative approaches, such as the MUNDS method used by the VVSMA consortium, analyses real-world crash data to assess the post-production safety benefits of these technologies.

On-road data analyses are always the ultimate test of the real-world effectiveness of these new technologies, although pre-production methods are still very useful in determining priorities and justifying the fitment of these new technologies. This is not to say that one method is superior to
another as both methods are complementary. It depends what purpose and priority is required in terms of choosing which technique is suitable.

Meta-analysis is a procedure that is frequently used by medical researchers in establishing the extent of medical conditions and successful treatments, using published randomised controlled trials and clinical controlled studies. The most well-known application of meta-analysis publications in the medical field is the Cochrane Reviews that through meta-analysis, provides evidence-based health care findings based on best available research evidence (Cochrane Collaboration (2014)). The medical approach, however, relies on published studies that fit their criteria, and hence is subject to long delays in evaluation time. The established Multiple National Database Study (MUNDS) approach adopted by the VVSMA consortium speeds up these evaluations by assembling multiple independent aggregate analyses from several jurisdictions using a common study design. This brings together a much larger pool of data than any one jurisdiction has available and speeds-up the process of evaluating safety technologies.

The evaluation of Low Speed Autonomous Emergency Braking (AEB City) in rear-end striking collisions was a successful first attempt by the VVSMA Consortium using the meta-analysis approach. As noted earlier, the analysis found a significant 38% reduction in rear-end striking crashes for vehicles fitted with the technology. It was facilitated by the relatively easy identification of target vehicles in these databases, given that the technology was standard equipment. The second analysis of Lane Departure Warning technology currently underway has additional challenges in that this technology is only fitted to some vehicles as optional equipment. This was discussed in some detail in an earlier section.

The need for early evaluation of these technologies was noted. They promise substantial benefits in reduced crashes and mitigating injuries yet very few can support these claims using real-world crash data. In an earlier report by Fildes et al (2013), they noted that the evaluation period can be reduced by half, using the MUNDS approach which means that these evaluations can play an important role in demonstrating real reductions in road trauma and motivation for their widespread fitment to the whole vehicle fleet. Moreover, early findings may also highlight the need for modifications and/or fine tuning to improve their effectiveness. It is critical to establish their likely crash benefits to help guide manufacturer, government and community judgments about which technologies should be pursued to encourage their widespread introduction and ensure maximum market penetration.

Finally, the collaborative approach adopted in this work through Euro NCAP proved to be both positive and productive in achieving its aims. Bringing governments, OEMs, NCAP groups and researchers together to address a common objective led to a creative and innovative evaluation that otherwise would not have been possible.

Limitations

There are limitations with this meta-analysis approach that need to be noted. First, the databases used in this AEB City study inevitably differed in terms of the way and accuracy of data collection across each of the regions. Some data contain a higher proportion of minor collisions to others and police attendance at these crashes was likely to vary. The composition of the vehicle fleet and the crash patterns can differ from region to region. While this was unlikely to have affected the results, it does reveal national data differences across jurisdictions. To the extent that the focus crashes are subject to the same sorts of reporting errors as the control crashes, the effectiveness formula can be expected to adjust for any such jurisdiction biases.

As each database is inevitably structured around local definitions and variables, it can be difficult to undertake a range of additional analyses beyond the core analysis. Again in the low speed AEB
analysis, the use of side impacts as an additional quasi induced exposure approach was not possible as these crash types could not be identified in all databases.

As the vehicle fleets differed across jurisdictions, these findings may not be representative of the effectiveness in any one region. This is not necessarily a major problem for the analysis though as the findings probably have more relevance overall than a series of single studies from individual jurisdictions. This adds to decisions about the need for widespread international fitment of these technologies even stronger.

Finally, in conducting these meta-analyses, it is assumed that the benefits calculated in these univariate analyses are for the technology under examination. Yet, as vehicle safety technologies increase and become integrated with others, there is the potential for the benefits to be confounded. While the VVSMA approach is aware of this possibility and has taken this into account to some degree in the selection of sensitive crash types for the AEB City and LDW/LKA effectiveness studies, nevertheless, this will present an additional challenge as the extent of these integrated systems expands. The means of addressing these potential confounding effects in meta-analysis is beyond the scope of the work conducted to date and warrants further research.

Conclusion and Recommendations

In conclusion, the use of the meta-analysis approach by the VVSMA consortium is seen as a valuable and important technique for evaluating new active safety technologies. The results showed that while individual jurisdiction analyses were unable to show significant reductions in crashes for the AEB City technology, statistically significant reductions were obtained from the meta-analysis due to the increase in the amount of data. The approach to pool individual analyzes to achieve a common result worked well without the need to share data records. In addition, the collaborative approach between governments, industry, consumer groups, and researchers was successful with high levels of cooperation. The main challenge when evaluating new safety systems is to get an early and robust indication of the real world performance in traffic. Often, the virtual predicted benefits of new technology can be influenced by human intervention. With a substantial increase in available data, statistically significant real-world findings can be obtained within much shorter timeframes using the meta-analysis approach. A major challenge is to identify vehicles with a specific safety feature when it is only offered as optional equipment. This paper has presented a bold new approach to evaluating the real-world crash benefits of safety technologies and recommends the approach for others to follow.

Acknowledgements

The authors acknowledge the contribution and valuable input to this study by all members of the VVSMA consortium and their organisations, namely Nils Bos, SWOV, Netherlands; David Brooks and Murray Doyle, Thatcham UK; Sebastian Döering, Volkswagen AG, Germany (and ACEA); Anders Kullgren and Matteo Rizzi, Folksam Insurance, Sweden; Olaf Jung, BMW Germany (and ACEA); Yves Page, Renault (and ACEA) France; Lucia Pennisi ACI Italy; Claus Pastor, BAST Germany; Simon Sternlund and Johan Standroth, Trafikverket, Sweden; Jim Hand at DfT, and Pete Thomas, Loughborough, University, UK (and DfT).

References

