The benefits of measuring driving exposure using objective GPS-based methods and subjective self-report methods concurrently.
James Thompson1,2
Dr Matthew Baldock1
Prof Jane Mathias2
Dr Lisa Wundersitz1

1Centre for Automotive Safety Research, The University of Adelaide
2School of Psychology, The University of Adelaide
Driving exposure

• Traditionally measured through self-report methods

• Questionnaires
 – Retrospective estimation
 – Inaccurate due to difficulty with recall

• Travel diaries
 – Daily logs of driving
 – Greater level of information (e.g., purpose, start/stop times, origin/destination, number of trips)
 – Substantial burden for participants
Global Positioning Systems (GPS)

• **Accuracy/objectivity**
 – Accurate measurements of distance and start/stop times
 – Less involvement and burden for participants

• **Other advantages**
 – Small, unobtrusive, inexpensive, reliable
 – Greater level of information (e.g., travelling speed, routes, road characteristics)

• **Disadvantages**
 – Inability to obtain some information (i.e., trip purpose and driver identification)
 – More easily obtained with self-report methods
The present study

- Evaluate the use of GPS for data measurement with older drivers for a period of one week

- Concurrently use telephone-based travel diaries to obtain trip purpose and driver identification information
Aims

• **Achievability**
 – Any problems could be overcome

• **Accuracy**
 – Correspondence between odometer and GPS measurements of distance travelled over one week
 – Correspondence between trips reported in the travel-diaries and those recorded by GPS

• Favourable feedback from participants
Participants

• Recruited at the South Australian Royal Automobile Association’s (RAA) “Years Ahead” presentations

• Total sample of 54 older drivers
 – 23 females and 31 males

• Ranged in age from 75 to 90 years, with a mean of 80.3 (SD = 3.7)
Materials

• 747ProS GPS Trip Recorder
 – Small and can be mounted onto the dashboard
 – 64Mb internal memory
 – Accurate
 – Rechargeable battery (30hrs operation/300hrs standby)
 – Car charger
 – Motion sensor

• Cold starts
 – Reception acquisition of 35 seconds when first switched on
 – Less than 1 second from standby
 – Assisted GPS (A-GPS)
Materials

![Image of Trip Recorder and Car Charger](image-url)

The image shows a Trip Recorder and a car charger. The Trip Recorder is compact and has a black casing with a display screen and buttons. The car charger has a rectangular shape with a plug for connecting to a vehicle's power outlet.
Materials

• Data analysis program
 – Developed at the Centre for Automotive Safety Research

• Travel diary
 – Information recorded daily
 – Odometer readings at start and end
Results

• Trip Recorder provided standard exposure measures
 – Distance driven, time spent driving, number of trips, start/stop times, date of driving

• Also measures that cannot be obtained via self-report
 – Travelling speed, information on roads and driving routes
Segment 1: 171-24-160
Segment 2: 171-24-169
Distance = 247.23 m
Time = 10.00 seconds
Speed = 89.00 km/h
Results

- GPS measurements of distance corresponded with odometer measurements
 - Thus the GPS measurements were accurate
Results

• Of 1,218 trips recorded by the Trip Recorder, 82.5% were reported in the travel diaries
 – The purposes of a further 12.6% were identified
 – The purposes of 4.8% were not
Problems with data collection

• Several instances where the Trip Recorder was delayed in acquiring satellite reception

• Four trips was not recorded at all
 – However, 1,218 successfully recorded trips
Feedback

• 16 participants provided feedback
 – Taking part in the study was easy
 – Not bothered by being called up each day and having to report their driving
 – Not bothered by having the GPS in their cars
 – The GPS did not affect the normal processes of driving
 – Did not change their normal driving routines in any way because of the GPS
 – Tended to forget that the GPS was in their cars
Main conclusions

• GPS provides accurate standard measures of exposure, as well as more complex information

• Concurrent use of self-report methods is an easy way to acquire trip purpose and driver identification

• A daily telephone-based travel diary reduces the burden on the participant and so leads to consistent reporting

• GPS will advance the measurement of driving exposure, but self-report methods are still useful
Acknowledgements

• This research was made possible by the scholarship generously provided by the Royal Automobile Association of South Australia

• The Centre for Automotive Safety Research receives supporting funding from both the South Australian Department for Planning, Transport and Infrastructure and the South Australian Motor Accident Commission