Incorporating the safe system and sociodemographics into the built environment model of traffic safety: A transtheoretical model

Vivien Y. Shia
Jung-Hoon Hana, PhD
Teresa Senserrickb, PhD
a Faculty of the Built Environment, UNSW
b Transport and Road Safety (TARS) Research, School of Aviation

Australasian Road Safety Research Policing and Education Conference
Brisbane Convention and Exhibition Centre, August 28-30, 2013
Built Environment and Traffic Safety
(Ewing & Dumbaugh’s Conceptual Framework, 2009)

Built Environment
- Development Patterns
- Roadway Designs

Mediators
- Traffic Volume
- Traffic Conflicts
- Traffic Speed

Traffic Safety
- Frequency
- Severity
Sociodemographics

ROAD USER
- Age/Gender
- Ethnicity
- Economic Level
- Education Level
- Car Ownership

AREA
- Socio Economic Level
- Education Level
- Car Ownership

Determine the (psychological/physical) responses to road safety issues
Proposed Transtheoretical Model

Built Environment

- **Density**
 - Population density
 - Employment density
- **Land Use**
 - Land use diversity
 - Land use density
- **Street network**
 - Connectivity
 - Street density

- **Road Geometry**
 - Width of lanes
 - Markings/delineation
- **Roadside Design**
 - Landscape
 - Clear zone
 - Shoulder
 - Street Parking
- **Traffic Control**
 - Traffic Signal
 - Flash lights
 - Road Signs
 - Roundabouts
- **Safety**
- **Countermeasures**
 - Footpaths
 - Ped crossings
 - Speed calming

Mediators

- **Road User**
 - Travel behaviour
 - On-road behaviour
- **Speed**
 - Speed management
- **Vehicle**
 - Vehicle ages
 - Vehicle types
 - Vehicle maintenance

Crash Risk

- Frequency
- Severity

- BE, Road User, Crash Risk
- BE, Speed, Crash Risk
- BE, Vehicle, Crash Risk
- BE, Sociodemographics, Crash Risk

Social demographics

- Age/gender/Ethnicity
- Social economic status
- Education
- Car ownership
Built Environment and Travel Behaviour

- Walk trips positively associated with street connectivity, land use diversity
- Car use was more frequent in areas with long blocks and sparse residents
- Certain land uses (Schools, shopping centres, railway stations and large commercial strips) would generate significant volumes of both motorised traffic and pedestrians
- Pedestrian friendly design could increase the walk trips

Built Environment and On-Road Behaviour

- Slower speeds and increased driver vigilance were found in compacter urban form
- Increased impaired driving and drunken pedestrian behaviour was found in area with higher alcohol availability
- Arduous design would induce risky pedestrian behaviours (walking across busy roads)
- Monotonous design would decrease driver’s vigilance and induce fatigue
- Roadside advertising billboards would increase the outside of vehicle distraction to drivers
Urban Form/Functional Street Network Design

- Travel Speeds are typically lower in higher density urban areas
- The functional design directs the higher speed traffic volumes to the non-residential arterial streets, decreases the speeds in residential area

Engineering design

- Narrow roads can lower traffic speeds
- Traffic calming designs are self-enforcing of traffic speeds
- Speed warning facilities
Vehicle ages/types and crashworthiness

- Improvement in crashworthiness with increasing year of manufacture
- Light cars tend to have lower aggressiveness but also poor crashworthiness

Neighbourhood design and vehicle choice

- Choice of passenger cars correlated to compact neighbourhood
- Choice of utilities were associated with suburban designs (large yards, off-street parking)
Built Environment and Sociodemographics

- It was assumed that lower socio economic rural and remote areas have worse roads conditions and the residents usually have older cars, possibly leading to poorer road crash outcomes.

Sociodemographics & Road User, Vehicle, Speed

- A higher level of walking was associated with a lower level of socioeconomic status
- Young drivers and male drivers are more likely to engage in risky driving (e.g. Speeding, drunk driving) than their older driver and female counterparts
- Car ownership is influenced by income and young drivers and low socioeconomic drivers tend to drive older vehicles
- Individuals with higher household incomes have a greater tendency to drive 4WDs than passenger cars and utilities and well-educated people have less utilities
CONCLUSIONS AND IMPLICATIONS

IMPLICATIONS

• It is important to incorporate road safety issues at the beginning of planning stage, especially the local government planning for a particular land use.

FUTURE WORK

• Based on the proposed framework, a further study is needed to address a specific road safety issue in Australia.
• Identify and gather evidence of the multiple relationships, a further study is needed to provide policy implications for transport planning & engineering in the future.
ACKNOWLEDGEMENT

Ye Shi receives the International Postgraduate Research Scholarship.

A/Prof Senserrick receives salary support from the National Health & Medical Research Council.

THANKS